

Welcome to scikit-dsp-comm’s documentation!

Readme

[image: Logo]

scikit-dsp-comm

[image: pypi]
 [https://pypi.python.org/pypi/scikit-dsp-comm][image: Docs]
 [http://scikit-dsp-comm.readthedocs.io/en/latest/?badge=latest]Feature story at the end of the readme. The docs have been failing to build since mid July as result of trying to include a Jupyter notebook example of an RTLSDR streaming example. Hopefully this will be resolved very soon.

Background

The origin of this package comes from the writing the book Signals and Systems for Dummies, published by Wiley in 2013. The original module for this book is named ssd.py. In scikit-dsp-comm this module is renamed to sigsys.py to better reflect the fact that signal processing and communications theory is founded in signals and systems, a traditional subject in electrical engineering curricula.

Package High Level Overview

This package is a collection of functions and classes to support signal processing and communications theory teaching and research. The foundation for this package is scipy.signal. The code in particular currently runs under Python 2.7x and 3.6x.

The real-time audio DSP capabilities of pyaudio_helper allow for two channel algorithm development with real-time user control enabled by the ipywidgets when running in the Jupyter notebook.

Finally, we now can utilize the real-time DSP capabilities of pyaudio_helper to work in combination with streaming of I/Q samples using new functions rtlsdr_helper. This allows in particular demodulation of radio signals and downsampling to baseband analog signals for streaming playback of say an FM broadcast station. This new capability is featured as a short article at the end of this readme file.

There are presently ten modules that make up scikit-dsp-comm:

	sigsys.py for basic signals and systems functions both continuous-time and discrete-time, including graphical display tools such as pole-zero plots, up-sampling and down-sampling.

	digitalcomm.py for digital modulation theory components, including asynchronous resampling and variable time delay functions, both useful in advanced modem testing.

	synchronization.py which contains phase-locked loop simulation functions and functions for carrier and phase synchronization of digital communications waveforms.

	fec_conv.py for the generation rate one-half and one-third convolutional codes and soft decision Viterbi algorithm decoding, including soft and hard decisions, trellis and trellis-traceback display functions, and puncturing.

	fir_design_helper.py which for easy design of lowpass, highpass, bandpass, and bandstop filters using the Kaiser window and equal-ripple designs, also includes a list plotting function for easily comparing magnitude, phase, and group delay frequency responses.

	iir_design_helper.py which for easy design of lowpass, highpass, bandpass, and bandstop filters using scipy.signal Butterworth, Chebyshev I and II, and elliptical designs, including the use of the cascade of second-order sections (SOS) topology from scipy.signal, also includes a list plotting function for easily comparing of magnitude, phase, and group delay frequency responses.

	multirate.py that encapsulate digital filters into objects for filtering, interpolation by an integer factor, and decimation by an integer factor.

	coeff2header.py write C/C++ header files for FIR and IIR filters implemented in C/C++, using the cascade of second-order section representation for the IIR case. This last module find use in real-time signal processing on embedded systems, but can be used for simulation models in C/C++.

Presently the collection of modules contains about 125 functions and classes. The authors/maintainers are working to get more detailed documentation in place.

Extras

This package contains the helper modules rtlsdr_helper, and pyaudio_helper which require the packages pyrtlsdr [https://pypi.python.org/pypi/pyrtlsdr] and PyAudio [https://pypi.python.org/pypi/PyAudio]. To use the full functionality of these helpers, install the package from the scikit-dsp-comm folder as follows:

pip install -e .[helpers]

Installation is described in greater detail below.

	pyaudio_helper.py wraps a class around the code required in PyAudio (wraps the C++ library PortAudio) to set up a non-blocking audio input/output stream. The user only has to write the callback function to implement real-time DSP processing using any of the input/output devices available on the platform. This resulting object also contains a capture buffer for use in post processing and a timing markers for assessing the processing time utilized by the callback function. When developing apps in the Jupyter Notebook there is support for the IPywidgets along with threading.

	rtlsdr_helper.py interfaces with pyrtldsr to provide a simple captures means for complex baseband software defined radio (SDR) samples from the low-cost (~$20) RTL-SDR USB hardware dongle. The remaining functions in this module support the implementation of demodulators for FM modulation and examples of complete receivers for FM mono, FM stereo, and tools for FSK demodulation, including bit synchronization. Real-time streaming is a new capability included.

Documentation

Documentation is now housed on readthedocs which you can get to by clicking the docs badge near the top of this README. Example notebooks can be viewed on GitHub pages [https://mwickert.github.io/scikit-dsp-comm/]. In time more notebook postings will be extracted from Dr. Wickert’s Info Center [http://www.eas.uccs.edu/~mwickert/].

Getting Set-up on Your System

The best way to use this package is to clone this repository and then install it.

git clone https://github.com/mwickert/scikit-dsp-comm.git

There are package dependencies for some modules that you may want to avoid. Specifically these are whenever hardware interfacing is involved. Specific hardware and software configuration details are discussed in wiki pages [https://github.com/mwickert/SP-Comm-Tutorial-using-scikit-dsp-comm/wiki].

For Windows users pip install takes care of almost everything. I assume below you have Python on your path, so for example with Anaconda [https://www.anaconda.com/download/#macos], I suggest letting the installer set these paths up for you.

Dependencies for pyaudio

Across the three popular platforms, Windows, macOS, and Linux, pyaudio, is
the underlying framework that pyaudio_helper relies upon. Getting PyAudio configured is different for all three OS’s. Conda and CondaForge have support for installing pyaudio
on both Linux and Windows. Under Python 3.6 and below PyAudio will install when pip installing the scikit-dsp-comm package, as described below. For Python 3.7+ PyAudio first needs to be installed using conda install pyaudio to obtain binary (whl) files.

All the capability of the package is available less PyAudio and the RTL-SDR radio, without doing any special installations. See the wiki pages [https://github.com/mwickert/SP-Comm-Tutorial-using-scikit-dsp-comm/wiki] for more information. Just keep in mind that now a Python 3.7+ install on windows must include the installation PyAudio as described above.

Editable Install with Dependencies

With the terminal in the root directory of the cloned repo perform an editable pip install using

pip install -e .[helpers]

Editable Install without Dependencies

To install without the PyAudio and RTL-SDR dependency, and hence not be able to use those modules,

pip install -e .

Why an Editable Install?

The advantage of the editable pip install is that it is very easy to keep scikit-dsp-comm up to date. If you know that updates have been pushed to the master branch, you simply go to your local repo folder and

git pull origin master

This will update you local repo and automatically update the Python install without the need to run pip again. Note: If you have any Python kernels running, such as a Jupyter Notebook, you will need to restart the kernel to insure any module changes get reloaded.

Feature: Added Software Defined Radio Streaming to rtlsdr_helper with Interface to pyaudio_helper

A recent push to the master branch now allows real-time SDR streaming from the RTL-SDR to pyaudio_helper. In this first release of the API, the system block diagram takes the from shown in the figure below:

[image: Block diagram for RTL-SDR streaming]
This capability is made possible via the new aynch and await capabilities of Python 3.7. For the details as to how this works you have to dig into the details found in the module rtlsdr_helper.py and the examples found in the notebook rtlsdr_helper_streaming_sample.ipynb. A screenshot from the sample Jupyter notebook, that implements a broadcast FM receiver, is shown below:

[image: Code snippet for an FM radio receiver.]
This is just the beginning of making a complete SDR receiver possible in a Jupyter notebook. Not only is the receiver a reality, the algorithms that implement the receiver, in Python, can easily be coded by the user.

To help develop demodulator algorithms a streaming code block interface standard, of sorts, is being developed this summer. The idea is to provide examples of how to write a simple Python class that will manage states in the DSP code that is inside the Callback Process block of the block diagram. More details by the end of the summer is expected, along with another sample notebook.

Examples

	SciPy 2017 Tutorial [https://github.com/mwickert/SP-Comm-Tutorial-using-scikit-dsp-comm]

	Jupyter Notebook Examples
	Introduction to Python and the Jupyter Notebook

	Rectangle and Triangle Pulses Defined

	Energy and Power Signals

	Fourier Series and Line Spectra Plotting

	Fourier Transforms

	Convolution

	Spectrum of PN Sequence (exact)

	Spectrum of PN Sequence (approx)

	Spectral Containment Bandwidth (text problem 2.55)

	Filter Analysis

	Filter Design Using the Helper Modules

	Design From Amplitude Response Requirements

	Linear Phase FIR Filter Design

	Traditional IIR Filter Design using the Bilinear Transform

	Multirate Signal Processing Using multirate_helper

	Introduction

	Real-Time Loop Through

	Widgets Examples

	RTLSDR Stream Class

	Probing in Time and Frequency

	Convolutional Coding

	Block Codes

Modules

	coeff2header

	digitalcom

	fec_conv

	fir_design_helper

	iir_design_helper

	multirate_helper

	pyaudio_helper

	rtlsdr_helper

	sigsys

	synchronization

Indices and tables

	Index

	Module Index

	Search Page

Jupyter Notebook Examples

Continuous-Time Signals and Systems using sigsys

	Introduction to Python and the Jupyter Notebook

	Rectangle and Triangle Pulses Defined
	More Signal Plotting
	Simple Cases:

	Custom Piecewise:

	Energy and Power Signals
	Power in the Sum of Two Sinusoids

	Fourier Series and Line Spectra Plotting
	Pulse Train

	Example: Pulse Train Line Spectra

	Example: Trapezoidal Pulse

	Fourier Transforms
	Example: Rectangular Pulse

	Example: Text Problem 2.31a Drill Down

	Example: Modulation Theorem

	Example: Representing a Bandlimited Signal

	Convolution

	Spectrum of PN Sequence (exact)

	Spectrum of PN Sequence (approx)
	Cross Correlation and Signal Delay

	Spectral Containment Bandwidth (text problem 2.55)
	Example:

	Filter Analysis
	Example: Discrete-Time Chebyshev Type I Bandpass Filter

	Example: Continuous-Time Bessel Bandpass Filter

	Second-Order Butterworth Lowpass Response
	Obtaining the Step Response via Simulation

FIR and IIR Filter Design

	Filter Design Using the Helper Modules

	Design From Amplitude Response Requirements

	Linear Phase FIR Filter Design
	Design Examples
	Example 1: Lowpass with \(f_s = 1\) Hz

	A Design Example Useful for Interpolation or Decimation

	Traditional IIR Filter Design using the Bilinear Transform
	IIR Design Based on the Bilinear Transformation
	Example: Lowpass Design Comparison
	Frequency Response Comparison

	A Half-Band Filter Design to Pass up to \(W/2\) when \(f_s = 8\) kHz

	Amplitude Response Bandpass Design

Multirate Processing

	Multirate Signal Processing Using multirate_helper
	The rate_change Class

	A Simple Example
	Time Domain

	Frequency Domain

	The multirate_FIR Class

	FIR Interpolator Design Example

	The multirate_IIR Class

	IIR Decimator Design Example

Real-Time DSP Using pyaudio_helper and ipywidgets

	Introduction
	Available Audio I/O Devices

	Real-Time Loop Through
	Real-Time Filtering

	Playback Only Using an Audio Loop

	Widgets Examples
	Stereo Gain Sliders

	Cross Panning

	Three Band Equalizer

RTL-SDR Helper Streaming Sample

	RTLSDR Stream Class
	Mono FM Receiver Example

	User-Defined Callbacks

	Probing in Time and Frequency
	Pulling frames from a stream

	Spectrum Plots

	Using Widgets
	Frequency Slider

	Audio Gain Slider

	On/Off Toggle Buttons

	Adjustable Stage 1 Filter

	Adjustable Stage 2 Filter

	Bypassing Audio

Convolutional Codes

	Convolutional Coding
	Rate 1/2
	Rate 1/2 Hard Decision Decoding
	Weight Structure Bounds BEP

	BEP Simulation

	Soft Decision Decoding BEP Simulation

	Rate 1/3
	Rate 1/3 Hard Decision Decoding
	Weight Structure Bounds BEP

	BEP Simulation

	Soft Decision Decoding BEP Simulation

Block Codes

	Block Codes
	Single Error Correction Block Codes
	Cyclic Codes

	Hamming Code

	Multiple Error Correction Block Codes
	Golay Code

	Bose-Chaudhuri-Hocquenghem (BCH) Codes

	Reed-Solomon Codes

[1]:

%pylab inline
import sk_dsp_comm.sigsys as ss
import scipy.signal as signal
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

[2]:

pylab.rcParams['savefig.dpi'] = 100 # default 72
%config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Introduction to Python and the Jupyter Notebook

[3]:

t = arange(-4,4,.01)
x = cos(2*pi*t)
plot(t,x)

grid()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_3_0.svg]

Rectangle and Triangle Pulses Defined

Before showing more examples, consider some familiar signal primitives in your signals and systems background.

To see these defined in the text see in particular Appendix F.5 (p.727) in the table of Fourier transform pairs.

Rectangle

\begin{align}
 \Pi\Big(\frac{t}{\tau}\Big) &= \begin{cases}
 1, & |t| \leq \tau/2 \\
 0, & \text{otherwise}
 \end{cases}
\end{align}
Triangle

\begin{align}
 \Lambda\Big(\frac{t}{\tau}\Big) &= \begin{cases}
 1-|t/\tau|, & |t|\leq \tau \\
 0, & \text{otherwise}
 \end{cases}
\end{align}
To more readily play with these function represent them numerically in Python. The module ss.py has some waveform primitives to help.

[4]:

t = arange(-5,5,.01)
x_rect = ss.rect(t-3,2)
x_tri = ss.tri(t+2,1.5)
subplot(211)
plot(t,x_rect)
grid()
ylabel(r'$\Pi((t-3)/2)$');
subplot(212)
plot(t,x_tri)
grid()
xlabel(r'Time (s)')
ylabel(r'$\Lambda((t+2)/1.5)$');
tight_layout()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_6_0.svg]

	Consider an interactive version of the above:

[5]:

Make an interactive version of the above
from ipywidgets import interact, interactive

def pulses_plot(D1,D2,W1,W2):
 t = arange(-5,5,.01)
 x_rect = ss.rect(t-D1,W1)
 x_tri = ss.tri(t-D2,W2)
 subplot(211)
 plot(t,x_rect)
 grid()
 ylabel(r'$\Pi((t-3)/2)$');
 subplot(212)
 plot(t,x_tri)
 grid()
 xlabel(r'Time (s)')
 ylabel(r'$\Lambda((t+2)/1.5)$');
 tight_layout()

interactive_plot = interactive(pulses_plot,D1 = (-3,3,.5), D2 = (-3,3,.5), W1 = (0.5,2,.25), W2 = (0.5,2,.25));
output = interactive_plot.children[-1]
output.layout.height = '350px'
interactive_plot

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_8_0.svg]

More Signal Plotting

The basic pulse shapes (primitives) defined in the module ssd.py are very useful for working Text 2.13a &d, but there are also times when you need a custom piecewise function.

Simple Cases:

Consider plotting

	\(x_1(t) = \sin(2\pi\cdot 5t) \Pi((t-2)/2)\) for \(0\leq t \leq 10\)

	\(x_2(t) = \sum_{n=-\infty}^\infty = \Pi((t-5n)/1)\) for \(-10 \leq t \leq 10\)

[6]:

t1 = arange(0,10+.01,.01) # arange stops one step size less than the upper limit
x1 = sin(2*pi*5*t1)* ss.rect(t1-2,2)
subplot(211)
plot(t1,x1)
xlabel(r'Time (s)')
ylabel(r'$x_1(t)$')
grid()
t2 = arange(-10,10,.01)
Tweak mod() to take on negative values
x2 = ss.rect(mod(t2+2.5,5)-2.5,1)
subplot(212)
plot(t2,x2)
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$')
grid()
tight_layout()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_10_0.svg]

Custom Piecewise:

A custom piecewise function is a direct and to the point way of getting a more complex function plotted. Consider plotting:

\begin{align}
 x_3(t) = \begin{cases}
 1 + t^2, & 0\leq t \leq 3 \\
 \cos(2\pi\cdot5\cdot t) & 3 < t \leq 5 \\
 0, & \text{otherwise}
 \end{cases}
\end{align}
for \(-2\leq t \leq 6\).

[7]:

def x3_func(t):
 """
 Create a piecewise function for plotting x3
 """
 x3 = zeros_like(t)
 for k,tk in enumerate(t):
 if tk >= 0 and tk <= 3:
 x3[k] = 1 + tk**2
 elif tk > 3 and tk <= 5:
 x3[k] = cos(2*pi*5*tk)
 return x3

[8]:

t3 = arange(-2,6+.01,.01)
x3 = x3_func(t3)
plot(t3,x3)
xlabel(r'Time (s)')
ylabel(r'$x_3(t)$')
xlim([-2,6])
grid()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_13_0.svg]

[9]:

26/2

[9]:

13.0

Energy and Power Signals

The general definitions are:

\begin{align}
 E &\overset{\Delta}{=} \lim_{T\rightarrow\infty} \int_{-T}^T |x(t)|^2\, dt = \int_{-\infty}^\infty |x(t)|^2\, dt \\
 P &\overset{\Delta}{=} \lim_{T\rightarrow\infty}\frac{1}{2T} \int_{-T}^T |x(t)|^2\, dt
\end{align}
For the case of a periodic signal, you can take the definition of \(P\) above and reduce the calculation down to

\begin{align}
 P = \frac{1}{T} \int_{t_0}^{t_0+T} |x(t)|^2\, dt
\end{align}
where \(t_0\) can be any convenient value.

Consider the waveform of Text problem 2.14b

\begin{align}
 x_2(t) = \sum_{n=-\infty}^\infty \Lambda\Big(\frac{t-3n}{2}\Big)
\end{align}
You can create an approximation to the waveform over a finite number of periods by doing a little programming:

[10]:

def periodic_tri(t,tau,T,N):
 """
 Approximate x2(t) by running the sum index from -N to +N.
 The period is set by T and tau is the tri pulse width
 parameter (base width is 2*tau).

 Mark Wickert January 2015
 """
 x = zeros_like(t)
 for n in arange(-N,N+1):
 x += ss.tri(t-T*n,tau)
 return x

[11]:

t = arange(-10,10,.001)
x = periodic_tri(t,2,6,10)
plot(t,x)
plot(t,abs(x)**2)
grid()
#xlim([-5,5])
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$ and $x_2^2(t)$');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_20_0.svg]

For the power calculation create a time array that runs over exactly one period. Below is the case for the original problem statement.

[12]:

T0 = 6
tp = arange(-T0/2,T0/2+.001,.001)
xp = periodic_tri(tp,2,T0,5)
plot(tp,xp)
plot(tp,abs(xp)**2)
legend((r'$x(t)$', r'$|x(t)|^2$'),loc='best',shadow=True)
grid();
xlim([-T0/2,T0/2])
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$ and $x_2^2(t)$');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_22_0.svg]

A simple numerical approximation to the integral

\begin{align}
 P = \frac{1}{T}\int_0^T |x_b(t)|^2\, dt
\end{align}
is shown below:

[13]:

#Power calculation
Px2 = (1/T0)*sum(xp**2)*.001 # rectangular partitions for integral
print('Power estimate via numerical integration: %2.4f W' % Px2)

Power estimate via numerical integration: 0.2222 W

Power in the Sum of Two Sinusoids

The problem is what is the power in the signal

\begin{align}
 x(t) = A_1 \cos(\omega_1 t +\phi_1) + A_2 \cos(\omega_2 t + \phi_2),\ -\infty < t < \infty
\end{align}
Since we are not certain that \(x(t)\) is periodic, the power calculation requires that we form

\begin{align}
 P_x = \lim_{T\rightarrow\infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2\, dt = \langle |x(t)|^2\rangle
\end{align}

	Rather that just jumping in and making a mess, consider first the expansion of \(|x(t)|^2 = x^2(t)\):

\begin{align}
x^2(t) &= \frac{A_1^2}{2}\big[1+\cos(2\omega_1 t + \phi_1)\big] + \frac{A_2^2}{2}\big[1+\cos(2\omega_2 t + \phi_2)\big] \\
&\quad + 2\frac{A_1 A_2}{2}\Big\{\cos[(\omega_1 + \omega_2)t + (\phi_1+\phi_2)\big] + \cos[(\omega_1 - \omega_2)t + (\phi_1-\phi_2)\big]\Big\}
\end{align}

	The time average operator is linear, so we consider \(\langle\ \ \rangle\) operating on each term of the above independently

	For \(\omega_1 \neq \omega_2\), the first two terms yield \(A_1^2/2\) and \(A_2^2/2\) respectively

	The last term requires some thinking, but as long as \(\omega_1 \neq \omega_2\) the times average of \(\cos[(\omega_1 + \omega_2)t + (\phi_1+\phi_2)]\) and \(\cos[(\omega_1 - \omega_2)t + (\phi_1-\phi_2)\)], the two terms respectively are each zero!

	Finally,

\begin{align}
P_x = \frac{A_1^2}{2} + \frac{A_2^2}{2}
\end{align}

	When the frequencies are equal, then you can combine the terms using trig identities (recall the phasor addition formula from ECE 2610

\begin{align}
x(t) = A\cos(\omega t + \phi)
\end{align}
where \(\omega = \omega_1 = \omega_2\) and

\begin{align}
Ae^{j\phi} = A_1e^{j\phi_1} + A_2 e^{j\phi_2}
\end{align}

[14]:

t = arange(-10,10,.001)
x1 = 4*cos(2*pi*10*t)
x2 = 3*cos(2*pi*3.45*t+pi/9)
plot(t,x1)
plot(t,x2)
plot(t,x1+x2)
grid()
xlabel(r'Time (s)')
ylabel(r'Amplitude')
legend((r'$x_1(t)$', r'$x_2(t)$', r'$x_1(t)+x_2(t)$'),loc='best',shadow=True)
xlim([-.1,.1]);

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_27_0.svg]

[15]:

print('Power calculations: %3.2f, %3.2f, %3.2f' \
 % (var(x1),var(x2),var(x1+x2)))

Power calculations: 8.00, 4.50, 12.50

[16]:

print('Theory: %3.2f, %3.2f, %3.2f' \
 % (4**2/2,3**2/2,4**2/2+3**2/2))

Theory: 8.00, 4.50, 12.50

Fourier Series and Line Spectra Plotting

Being able to easily plot the line spectra of periodic signals will hopefully enhance your understanding. The module ss.py contains the function ss.line_spectra() for this purpose. The function assumes that the Fourier coefficients, \(X_n\) are available for a real signal \(x(t)\). The function plots line spectra as: * The two-sided magnitude spectra * The two-sided magnitude spectra in dB with an adjustable floor level in dB * The two-sided phase spectra in radians * The
one-sided line spectra corresponding to the three cases listed immediately above Examples are given below for the case of a simple pulse train and then for a trapezoidal pulse train. IN the case of the trapezoidal pulse train the underlying Fourier coefficients are obtained numerically using the FFT as described in the course notes.

A fundamental requirement in using ss.line_spectra() is to beable to supply the coefficients starting with the DC term coefficient \(X_0\) and moving up to the \(N\)th harmonic. Before plotting the pulse train line spectra I first describe a helper function for visualizing the pulse train waveform.

Pulse Train

[17]:

def pulse_train(Np,fs,tau,t0):
 """
 Generate a discrete-time approximation to a continuous-time
 pulse train signal. Amplitude values are [0,1]. Scale and offset
 later if needed.

 Inputs

 Np = number of periods to generate
 fs = samples per period
 tau = duty cycle
 t0 = pulse delay time relative to first rising edge at t = 0

 Return

 t = time axis array
 x = waveform

 Mark Wickert, January 2015
 """
 t = arange(0,Np*fs+1,1)/fs #time is normalized to make period T0 = 1.0
 x = zeros_like(t)
 # Using a brute force approach, just fill x with the sample values
 for k,tk in enumerate(t):
 if mod(tk-t0,1) <= tau and mod(tk-t0,1) >= 0:
 x[k] = 1
 return t,x

[18]:

tau = 1/8; fs = 8*16; t0 = 0 # note t0 = tau/2
subplot(211)
t,x = pulse_train(4,fs,tau,t0)
plot(t,x) # Just a plot of xa(t)
ylim([-.1,1.1])
grid()
ylabel(r'$x_a(t)$')
title(r'Pulse Train Signal: (top) $x_a(t)$, (bot) $x_b(t) = 1-x_a(t)$');
subplot(212)
t,x = pulse_train(4,fs,tau,t0)
plot(t,1-x) # Note here y(t) = 1 - x(t), a special case of
ylim([-.1,1.1]) # y(t) = A + B*x(t) in the notes
grid()
xlabel(r'Time (t/T_0)')
ylabel(r'$x_b(t)$');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_34_0.svg]

Example: Pulse Train Line Spectra

For the case of pulse train having the initial pulse starting at \(t=0\), i.e.,

\begin{align}
 x(t) = \sum_{k=-\infty}^\infty A\cdot \Pi\left(\frac{t-\tau/2-kT_0}{\tau}\right),
\end{align}
the Fourier coefficient are given by

\begin{align}
 X_n = A\cdot\frac{\tau}{T_0}\cdot\text{sinc}(nf_0\tau)\cdot\exp(-j2\pi n f_0t_0)
\end{align}
where \(f_0 = 1/T_0\) is the fundamental frequency and here \(t_0 = \tau/2\).

Line spectra plotting is shown below for this case. If the pulse train should be shifted in time to some other orientation, then the phase plot will change, as the included \(\exp(j2\pi n f_0 t_0)\) term will be different.

Note: The pulse train function define above is slightly different from the pulse train defined in the book and shown in mathematical form as \(x(t)\) just above in this cell. The function pulse_train() has the first pulse starting exactly at \(t=0\). To move the pule train right or left on the time axis, you can use the function parameter t0.

[19]:

n = arange(0,25+1) # Get 0 through 25 harmonics
tau = 0.125; f0 = 1; A = 1;
Xn = A*tau*f0*sinc(n*f0*tau)*exp(-1j*2*pi*n*f0*tau/2)
Xn = -Xn # Convert the coefficients from xa(t) t0 xb(t)
Xn[0] += 1
figure(figsize=(6,2))
f = n # Assume a fundamental frequency of 1 Hz so f = n
ss.line_spectra(f,Xn,mode='mag',sides=2,fsize=(6,2))
xlim([-25,25]);
#ylim([-50,10])
figure(figsize=(6,2))
ss.line_spectra(f,Xn,mode='phase',fsize=(6,2))
xlim([-25,25]);

<Figure size 432x144 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_37_1.svg]

<Figure size 432x144 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_37_3.svg]

Example: Trapezoidal Pulse

Consider the line spectra of a finite rise and fall time pulse train is of practical interest. The function trap_pulse() allows you first visualize one period of the trapezoidal pulse train, and then use this waveform in obtaining numerically the Fourier coefficients of this signal. PLotting the corresponding line spectra follows.

A point to be main is that by slowing down the edges (rise time/fall time) of the pulse train the amplitude of the harmonics falls off more rapidly. When considering the clock speed in todays PCs this can be a good thing as harmonic emission is an issue.

[20]:

def trap_pulse(N,tau,tr):
 """
 xp = trap_pulse(N,tau,tr)

 Mark Wickert, January 2015
 """
 n = arange(0,N)
 t = n/N
 xp = zeros(len(t))
 # Assume tr and tf are equal
 T1 = tau + tr
 # Create one period of the trapezoidal pulse waveform
 for k in n:
 if t[k] <= tr:
 xp[k] = t[k]/tr
 elif (t[k] > tr and t[k] <= tau):
 xp[k] = 1
 elif (t[k] > tau and t[k] < T1):
 xp[k] = -t[k]/tr + 1 + tau/tr;
 else:
 xp[k] = 0
 return xp, t

Let \(\tau = 1/8\) and \(t_r = 1/20\):

[21]:

tau = 1/8, tr = 1/20
N = 1024
xp,t = trap_pulse(N,1/8,1/20)
Xp = fft.fft(xp)
figure(figsize=(6,2))
plot(t,xp)
grid()
title(r'Spectra of Finite Risetime Pulse Train: $\tau = 1/8$ $t_r = 1/20$')
ylabel(r'$x(t)$')
xlabel('Time (s)')
f = arange(0,N/2)
ss.line_spectra(f[0:25],Xp[0:25]/N,'magdB',floor_dB=-80,fsize=(6,2))
ylabel(r'$|X_n| = |X(f_n)|$ (dB)');
#% tau = 1/8, tr = 1/10
xp,t = trap_pulse(N,1/8,1/10)
Xp = fft.fft(xp)
figure(figsize=(6,2))
plot(t,xp)
grid()
title(r'Spectra of Finite Risetime Pulse Train: $\tau = 1/8$ $t_r = 1/10$')
ylabel(r'$x(t)$')
xlabel('Time (s)')
ss.line_spectra(f[0:25],Xp[0:25]/N,'magdB',floor_dB=-80,fsize=(6,2))
ylabel(r'$|X_n| = |X(f_n)|$ (dB)');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_42_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_42_1.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_42_2.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_42_3.svg]

With the edge speed slowed down it is clear that the harmonics drop off faster.

Fourier Transforms

The Fourier transfrom definition is:

\begin{align}
 X(f) &= \int_{-\infty}^\infty x(t)\ e^{-j2\pi ft}\, dt \\
 x(t) &= \int_{-\infty}^\infty X(f)\, e^{j2\pi ft}\, df
\end{align}
A numerical approximation to the Fourier transform is possible using the FFT, or more conveniently using the function freqz() from the package scipy.signal. A helper function to abstract some of the digital signal processing details is f, X = FT_approx(x,dt,Nfft). The function is now part of sigsys.py with name change to ft_approx():

[22]:

def FT_approx(x,t,Nfft):
 '''
 Approximate the Fourier transform of a finite duration
 signal using scipy.signal.freqz()

 Inputs

 x = input signal array
 t = time array used to create x(t)
 Nfft = the number of frdquency domain points used to
 approximate X(f) on the interval [fs/2,fs/2], where
 fs = 1/Dt. Dt being the time spacing in array t

 Return

 f = frequency axis array in Hz
 X = the Fourier transform approximation (complex)

 Mark Wickert, January 2015
 '''
 fs = 1/(t[1] - t[0])
 t0 = (t[-1]+t[0])/2 # time delay at center
 N0 = len(t)/2 # FFT center in samples
 f = arange(-1/2,1/2,1/Nfft)
 w, X = signal.freqz(x,1,2*pi*f)
 X /= fs # account for dt = 1/fs in integral
 X *= exp(-1j*2*pi*f*fs*t0)# time interval correction
 X *= exp(1j*2*pi*f*N0)# FFT time interval is [0,Nfft-1]
 F = f*fs
 return F, X

Example: Rectangular Pulse

As as simple starting point example, consider \(x(t) = \Pi(t\tau)\). The well known result for the Fourier transfrom (FT) is:

\begin{align}
 X(f) = \mathcal{F}\left\{\Pi\left(\frac{t}{\tau}\right)\right\} = \tau\,\text{sinc}(f\tau)
\end{align}
We now use the above defined FT_approx() to obtain a numerical approximation to the FT of the rectangular pulse.

Tips: * Make sure the signal is well contained on the time interval used to generate \(x(t)\) * Make sure the sampling rate, one over the sample spacing, is adequate to represent the signal spectrum * From sampling theory, the reange of frequencies represented by the spectrum estimate will be \(f_s/2 \leq f < f_s/2\)

[23]:

fs = 100 # sampling rate in Hz
tau = 1
t = arange(-5,5,1/fs)
x0 = ss.rect(t-.5,tau)
figure(figsize=(6,5))
subplot(311)
plot(t,x0)
grid()
ylim([-0.1,1.1])
xlim([-2,2])
title(r'Exact Waveform')
xlabel(r'Time (s)')
ylabel(r'$x_0(t)$');

FT Exact Plot
fe = arange(-10,10,.01)
X0e = tau*sinc(fe*tau)
subplot(312)
plot(fe,abs(X0e))
#plot(f,angle(X0))
grid()
xlim([-10,10])
title(r'Exact Spectrum Magnitude')
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_0e(f)|$');

FT Approximation Plot
f,X0 = ss.ft_approx(x0,t,4096)
subplot(313)
plot(f,abs(X0))
#plot(f,angle(X0))
grid()
xlim([-10,10])
title(r'Approximation Spectrum Magnitude')
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_0(f)|$');
tight_layout()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_49_0.svg]

Example: Text Problem 2.31a Drill Down

In this problem you are given

\begin{align}
 x_1(t) = \Pi\left(\frac{t+1/2}{1}\right) - \Pi\left(\frac{t-1/2}{1}\right)
\end{align}
The Fourier transfrom of this signal can be found using linearity and the time delay theorems.

\begin{align}
 X_1(f) &= \mathcal{F}\left\{\Pi\left(\frac{t+1/2}{1}\right) - \Pi\left(\frac{t-1/2}{1}\right)\right\} \\
 &= \text{sinc}(f)\cdot\left[e^{j2\pi f\cdot 1/2} - e^{-j2\pi f\cdot 1/2}\right]\times\frac{2j}{2j} \\
 &= 2j\ \text{sinc}(f)\cdot\sin(\pi f)
\end{align}

[24]:

fs = 100
t = arange(-5,5,1/fs)
x1 = ss.rect(t+1/2,1)-ss.rect(t-1/2,1)
subplot(211)
plot(t,x1)
grid()
ylim([-1.1,1.1])
xlim([-2,2])
xlabel(r'Time (s)')
ylabel(r'$x_1(t)$');
fe = arange(-10,10,.01)
X1e = 2*1j*sinc(fe)*sin(pi*fe)
f,X1 = ss.ft_approx(x1,t,4096)
subplot(212)
plot(f,abs(X1))
plot(fe,abs(X1e))
#plot(f,angle(X1))
legend((r'Num Approx',r'Exact'),loc='best')
grid()
xlim([-10,10])
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_1(f)|$');
tight_layout()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_52_0.svg]

	Notice the numerical approximation and exact spectral plots overlay one another

Example: Modulation Theorem

Consider the modulation theorem, which is extremely important to communications theory:

\begin{align}
 y(t) &= x(t)\cdot\cos(2\pi f_0 t) \\
 Y(f) &= \frac{1}{2}\left[X(f-f_0) + X(f+f_0)\right]
\end{align}
Here we will use a triangle pulse for \(x(t)\):

[25]:

fs = 100 # sampling rate in Hz
tau = 1
t = arange(-5,5,1/fs)
x3 = ss.tri(t,tau)
y = x3*cos(2*pi*10*t)
subplot(211)
plot(t,x3)
plot(t,y)
grid()
ylim([-1.1,1.1])
xlim([-2,2])
legend((r'$x_3(t)$', r'$y(t)$'),loc='lower right',shadow=True)
title(r'Time Domain: $x_3(t)$ and $y(t)=x_3(t)\cos(2\pi\cdot 5\cdot t)$')
xlabel(r'Time (s)')
ylabel(r'$y(t)$');
f,Y = ss.ft_approx(y,t,4096)
subplot(212)
plot(f,abs(Y))
#plot(f,angle(X0))
grid()
title(r'Frequency Domain: $Y(f)$')
xlim([-15,15])
xlabel(r'Frequency (Hz)')
ylabel(r'$|Y(f)|$');
tight_layout()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_56_0.svg]

Example: Representing a Bandlimited Signal

We know that in theory a bandlimited signal can only be generated from a signal having infinite duration. Specifically, a signal with rectangular spectrum has Fourier transfrom pair:

\begin{align}
 x(t) = 2W\text{sinc}(2Wt) \overset{\mathcal{F}}{\Leftrightarrow} \Pi\left(\frac{f}{2W}\right) = X(f)
\end{align}
In a simulation we expect to have troubles modeling the finite duration aspects of the signal.

[26]:

fs = 100 # sampling rate in Hz
W = 5
t = arange(-5,5,1/fs)
x4 = 2*W*sinc(2*W*t)
figure(figsize=(6,2))
plot(t,x4)
grid()
#ylim([-1.1,1.1])
xlim([-2,2])
title(r'Time Domain: $x_4(t),\ W = 5$ Hz')
xlabel(r'Time (s)')
ylabel(r'$x_4(t)$');
f,X4 = ss.ft_approx(x4,t,4096)
figure(figsize=(6,2))
plot(f,abs(X4))
grid()
title(r'Frequency Domain: $X_4(f)$')
xlim([-10,10])
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_4(f)|$');
figure(figsize=(6,2))
plot(f,20*log10(abs(X4)))
grid()
title(r'Frequency Domain: $X_4(f)$ in dB')
ylim([-50,5])
xlim([-10,10])
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_4(f)|$ (dB)');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_59_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_59_1.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_59_2.svg]

Note: The dB version (last plot) reveals that the first sidelobes of the spectrum are only down ~21dB. Increasing the length of the time window will not help. The spectral side lobes will become more tightly packed, but the first sidelobe will still be down only 21dB. With other pulse shapes in the time domain, i.e., note simply a truncted \(\text{sinc}()\) function reduced sidelobes can be obtained.

Convolution

	The convolution of two signals \(x_1(t)\) and \(x_2(t)\) is defined as

\begin{align}
x(t) &= x_1(t)\ast x_2(t) = \int_{-\infty}^\infty x_1(\lambda)x_2(t-\lambda)\, d\lambda \\
&= x_2(t)\ast x_1(t) = \int_{-\infty}^\infty x_2(\lambda)x_1(t-\lambda)\, d\lambda
\end{align}

	A special convolution case is \(\delta(t-t_0)\)

\begin{align}
 \delta(t-t_0)\ast x(t) &= \int_{-\infty}^\infty \delta(\lambda-t_0)x(t-\lambda)\, d\lambda \\
 &= x(t-\lambda)\big|_{\lambda=t_0} = x(t-t_0)
\end{align}
You can experiment with the convolution integral numerically using ssd.conv_integral() found in the module ssd.py.

[27]:

t = arange(-2,2.001,.001)
p1 = ss.rect(t,1)
p2 = ss.rect(t,3)
y,ty = ss.conv_integral(p1,t,p2,t)
plot(ty,y)
ylim([-.01,1.01])
grid()
xlabel(r'Time (s)')
ylabel(r'$y(t)$');

Output support: (-4.00, +4.00)

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_63_1.svg]

For convolutions involving semi-infinite signals, such as \(u(t)\), you can tell ssd.conv_integral() about this via the optional extent argument. See the function help using

ss.conv_integral?

[28]:

Consider a pulse convolved with an exponential ('r' type extent)
tx = arange(-1,8,.01)
x = ss.rect(tx-2,4) # pulse starts at t = 0
h = 4*exp(-4*tx)*ss.step(tx)
y,ty = ss.conv_integral(x,tx,h,tx,extent=('f','r')) # note extents set
plot(ty,y) # expect a pulse charge and discharge waveform
grid()
title(r'$\Pi((t-2)/4)\ast 4 e^{-4t} u(t)$')
xlabel(r'Time (s)')
ylabel(r'$y(t)$');

Output support: (-2.00, +6.99)

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_65_1.svg]

Spectrum of PN Sequence (exact)

The cell below is a copy of the earlier pulse train line spectra example. Use this as a template to create the solution to the PN code problem of HW 3.

[29]:

n = arange(0,25+1) # Get 0 through 25 harmonics
tau = 0.125; f0 = 1; A = 1;
Xn = A*tau*f0*sinc(n*f0*tau)*exp(-1j*2*pi*n*f0*tau/2)
Xn = -Xn # Convert the coefficients from xa(t) t0 xb(t)
Xn[0] += 1
figure(figsize=(6,2))
f = n # Assume a fundamental frequency of 1 Hz so f = n
ss.line_spectra(f,Xn,mode='mag',sides=2,fsize=(6,2))
xlim([-25,25]);
#ylim([-50,10])
figure(figsize=(6,2))
ss.line_spectra(f,Xn,mode='phase',fsize=(6,2))
xlim([-25,25]);

<Figure size 432x144 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_67_1.svg]

<Figure size 432x144 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_67_3.svg]

Spectrum of PN Sequence (approx)

The code below approximates the PSD of the PN code using a numerical approximation to the Fourier coefficients, \(X_n\). This development may be useful for the lab, as you can esily change the waveform level without having to rework the theory.

The approach taken here to create one period of the PN waveform at 10 samples per bit. The line containing the function ss.upsample() converts the bit sequence into a waveform by upsampling and filtering with a rectangular pulse shape (ones(10)). The function ss.fs_coeff() numerically calculates the \(X_n\)’s. To plot the PSD from the Fourier coefficients we use

\[\begin{align}\begin{aligned} S_x(f) = \sum_{n=-\infty}^\infty |X_n|^2 \delta(f-nf_0)\\where :math:`f_0` in this case is :math:`1/(MT_0)` with :math:`T_0` beging the bit period and :math:`M` the code period in bits.\end{aligned}\end{align} \]

[30]:

x_PN4 = ss.m_seq(4)
x = signal.lfilter(ones(10),1,ss.upsample(x_PN4,10))
t = arange(0,len(x))/10
figure(figsize=(6,2))
plot(t,x);
title(r'Time Domain and PSD of $M=15$ PN Code with $T = 1$')
xlabel(r'Time (s)')
ylabel(r'x(t)')
axis([0,15,-0.1,1.1]);
grid()
10 samples/bit so 150 samples/period
harmonics spaced by 1/(15*T) = 1/15
Xk,fk = ss.fs_coeff(x,45,1/15)
ss.line_spectra(fk,Xk,'magdB',lwidth=2.0,floor_dB=-50,fsize=(6,2))
xlim([-3,3])
ylabel(r'$|X_n| = |X(f_n)|$ (dB)');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_69_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_69_1.svg]

[31]:

Line spacing
1/15

[31]:

0.06666666666666667

[32]:

import sk_dsp_comm.digitalcom as dc
y_PN5_bits = ss.PN_gen(10000,5)
Convert to waveform level shifted to +/-1 amplitude
y = 2*signal.lfilter(ones(10),1,ss.upsample(y_PN5_bits,10))-1
Find the time averaged autocorrelation function normalized
to have a peak amplitude of 1
Ry,tau = dc.xcorr(y,y,400)
We know Ry is real so strip small imag parts from FFT-based calc
Ry = Ry.real

[33]:

fs = 10
t = arange(len(y))/fs
plot(t[:500],y[:500])
title(r'PN Waveform for 5 Stages (Period $2^5 -1 = 31$ bits)')
ylabel(r'Amplitude')
xlabel(r'Bits (10 samples/bit)')
grid();

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_72_0.svg]

[34]:

tau_s = tau/10
figure(figsize=(6,2))
plot(tau_s,Ry)
title(r'Autocorrelation and PSD Estimates for $M=31$ with $T = 1$')
xlabel(r'Autocorrelation Lag τ (s)')
ylabel(r'$R_y(\tau)$')
grid();
figure(figsize=(6,2))
psd(y,2**12,10)
xlabel(r'Frequency (Hz)')
ylabel(r'$S_y(f)$ (dB)')
#xlim([0,.002]);
ylim([-30,20]);

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_73_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_73_1.svg]

In Lab 2 of ECE 4670 a C/C++ version of a PN generator is implemented to run the ARM mbed LPC 1768 microcontroller (https://www.sparkfun.com/products/9564). At the heart of this code is:

// Globals defined as unsigned int
tap1 -= 1;
tap2 -= 1;
mask1 = 0x1 << (tap1);
mask2 = 0x1 << (tap2);
bit = 0x0;
sync = 0x0;

void gen_PN() {
 my_pin5 = bit;
 my_pin6 = synch_bit;
 led2 = bit;
 led3 = synch_bit;
 if (clk_state == 0x1)
 {
 // Advance m-sequence generator by one bit
 // XOR tap1 and tap2 SR values and feedback to input
 fb = ((sr & mask1)>> tap1) ^ ((sr & mask2) >> tap2);
 sr = (sr << 1) + fb;
 bit = sr & 0x1;
 // Use random number generator in place of m-sequence bits
 if (DIP_sw4)
 {
 bit = rand_int() & 0x1;
 }
 clk_state = 0x0;
 // See if all 1's condition exists in SR
 if ((sr & synch) == synch) {
 synch_bit = 0x1;
 }
 else
 {
 synch_bit = 0x0;
 }
 }
 else
 {
 if (DIP_sw1) bit = !bit;
 clk_state = 0x1;
 }
}

The data type is unsigned int, which on the mbed is uint16_t, an unsigned 16-bit integer. A single unsigned integer is used as a 16-bit shift register with the LSB, furthest bit to the right, used to represent the first register stage. The shift register is advanced using a left shift << bitwise operation. We can code this Python almost directly, as shown below.

[35]:

class bitwise_PN(object):
 """
 Implement a PN generator using bitwise manipulation for
 the shift register. The LSB holds b0 and bits are shifted left.
 +----+----+----+----+----+----+----+
 sr = |bM-1| .. |bM-k| .. | b2 | b1 | b0 |
 +----+----+----+----+----+----+----+
 | |
 Feedback:(tap1-1) (tap2-1) Shift left using <<

 Mark Wickert February 2017
 """
 def __init__(self,tap1,tap2,Nstage,sr_initialize):
 """
 Initialize the PN generator object
 """
 self.tap1 = tap1 - 1
 self.tap2 = tap2 - 1
 self.mask1 = 0x1 << (tap1 - 1) # to select bit of interest
 self.mask2 = 0x1 << (tap2 - 1) # to select bit of interest
 self.Nstage = Nstage
 self.period = 2**Nstage - 1
 self.sr = sr_initialize
 self.bit = 0
 self.sync_bit = 0

 def clock_PN(self):
 '''
 Method to advance m-sequence generator by one bit
 XOR tap1 and tap2 SR values and feedback to input
 '''
 fb = ((self.sr & self.mask1)>> self.tap1) ^ \
 ((self.sr & self.mask2) >> self.tap2)
 self.sr = (self.sr << 1) + fb
 self.sr = self.sr & self.period # set MSBs > Nstage to 0
 self.bit = self.sr & 0x1 # output LSB from SR
 # See if all 1's condition exits in SR, if so output a synch pulse
 if ((self.sr & self.period) == self.period):
 self.sync_bit = 0x1
 else:
 self.sync_bit = 0x0
 print('output = %d, sr contents = %s, sync bit = %d' \
 % (self.bit, binary(self.sr, self.Nstage), self.sync_bit))

[36]:

A simple binary format display function which shows
leading zeros to a fixed bit width
def binary(num, length=8):
 return format(num, '#0{}b'.format(length + 2))

[37]:

PN1 = bitwise_PN(10,7,10,0x1)

[38]:

PN1.clock_PN()

output = 0, sr contents = 0b0000000010, sync bit = 0

[39]:

sr initial condition
sr = 0b1

[40]:

Nout = 20
x_out = zeros(Nout)
s_out = zeros(Nout)
PN1 = bitwise_PN(3,2,3,0x1)
for k in range(Nout):
 PN1.clock_PN()
 x_out[k] = PN1.bit
 s_out[k] = PN1.sync_bit

output = 0, sr contents = 0b010, sync bit = 0
output = 1, sr contents = 0b101, sync bit = 0
output = 1, sr contents = 0b011, sync bit = 0
output = 1, sr contents = 0b111, sync bit = 1
output = 0, sr contents = 0b110, sync bit = 0
output = 0, sr contents = 0b100, sync bit = 0
output = 1, sr contents = 0b001, sync bit = 0
output = 0, sr contents = 0b010, sync bit = 0
output = 1, sr contents = 0b101, sync bit = 0
output = 1, sr contents = 0b011, sync bit = 0
output = 1, sr contents = 0b111, sync bit = 1
output = 0, sr contents = 0b110, sync bit = 0
output = 0, sr contents = 0b100, sync bit = 0
output = 1, sr contents = 0b001, sync bit = 0
output = 0, sr contents = 0b010, sync bit = 0
output = 1, sr contents = 0b101, sync bit = 0
output = 1, sr contents = 0b011, sync bit = 0
output = 1, sr contents = 0b111, sync bit = 1
output = 0, sr contents = 0b110, sync bit = 0
output = 0, sr contents = 0b100, sync bit = 0

[41]:

stem(x_out)
stem(0.2*s_out,markerfmt = 'ro')
ylim([0,1.1])

[41]:

(0, 1.1)

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_81_1.svg]

Cross Correlation and Signal Delay

The idea of the autocorrelation function can be extended to the cross correlation, that is the correlation or likeness between two signals, say \(x(t)\) and \(y(t)\). Define

\begin{align}
 R_{xy}(\tau) = \langle x(t)y(t+\tau)\rangle = \lim_{T\rightarrow\infty} \frac{1}{2T}\int_{-T}^T x(t)y(t+\tau)\, dt
\end{align}
Consider a simulation example using dc.xcorr(x,t,lags):

[42]:

import sk_dsp_comm.digitalcom as dc
x_PN4_bits = ss.PN_gen(10000,6)
Convert to waveform level shifted to +/-1 amplitude
x_s = 2*signal.lfilter(ones(10),1,ss.upsample(x_PN4_bits,10))-1
Form a delayed version of x_S
T_D = 35 # 35 sample delay
y_s = signal.lfilter(concatenate((zeros(T_D),array([1]))),1,x_s)
figure(figsize=(6,2))
plot(x_s[:200])
plot(y_s[:200])
ylim([-1.1,1.1])
title(r'Delayed and Undelayed Signals for $T_D = 35$ Samples')
xlabel(r'Samples (10/PN bit)')
ylabel(r'$x_s(t)$ and $y_s(t)$')
grid();
Find the time averaged autocorrelation function normalized
to have a peak amplitude of 1
Ryx,tau = dc.xcorr(y_s,x_s,200) #note order change
We know Ryx is real
Ryx = Ryx.real
tau_s = tau/10
figure(figsize=(6,2))
plot(tau_s,Ryx)
title(r'Cross Correlation for $M=4$ with $T = 1$ and Delay 35 Samples')
xlabel(r'Autocorrelation Lag τ (s)')
ylabel(r'$R_{yx}(\tau)$')
grid();

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_84_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_84_1.svg]

Spectral Containment Bandwidth (text problem 2.55)

In text problem 2.55 you are asked to find the 90% energy contain bandwidth of a signal \(x_i(t)\). Specifically you are to find the lowpass or one-sided bandwidth of a baseband signal such that 90% of the total signal energy is contained in the bandwidth, \(B_{90}\). You obtain \(B_{90}\) by solving the following equation

\begin{align}
 0.9 = \frac{0.9 E_\text{total}}{E_\text{total}} = \frac{\int_{-B_{90}}^{B_{90}} G(f) df}{\int_{-\infty}^\infty G(f) df} = \frac{2\int_0^{B_{90}} G(f) df}{2\int_0^\infty G(f) df} = \frac{\int_0^{B_{90}} G(f) df}{\int_0^\infty G(f) df},
\end{align}
where \(G(f) = |X_i(f)|^2\) is the energy spectral density of \(x_i(t)\).

For parts (c) and (d) the problem states you need to perform numerical integration.

Example:

In an exalier example found in this notebook I found the Fourier transform of

\begin{align}
 x(t) = \Pi\left(\frac{t-\tau/2}{\tau}\right) - \Pi\left(\frac{t+\tau/2}{\tau}\right)
\end{align}
to be

\begin{align}
 X(f) &= 2j\ \text{sinc}(f\tau)\cdot\sin(\pi f\tau)
\end{align}
Note I have modified the problem to now have pulse width \(\tau\) to better match the homework problem where \(\tau\) is a variable.

The energy spectral density is

\begin{align}
 G(f) = 4\, \text{sinc}^2(f\tau)\cdot\sin^2(\pi f\tau)
\end{align}
I convenient way to numerically integrate \(G(f)\) is using simple reactangular partitions, but making sure that \(\Delta f\) is small relative to the changes in \(G(f)\). Since you do not know what the value of \(\tau\) you consider a normalized frequency variable \(f_n = f\tau\) in the analysis. The rest of the steps are:

	Sweep \(G(f_n)\) using an array fn running from zero to \(f_n\) large enough to insure that \(G(f_n)\) is very small relative to it largest value. In Python this is just filling an array, Gn with the functional values.

	Form a new array which contains the cumulative sum of the values in Gn, say Gn_cumsum = cumsum(Gn). Aso form the sum of the array values, i.e., Gn_tot = sum(Gn)

	Plot the ratio of `Gn_cumsum/Gn_sum versus fn. The curve should start at zero and climb to one as \(f_n\) becomes large. The value of \(f_n\) where the curve crosses through 0.9 is the 90% containment bandwidth.

Note: You might notice that \(\Delta f\), which is needed in the rectangular integration formula was never used. Why? In the calculation of the cumulative sum and the calculation of the total, both should include \(\Delta f\), hence in the ration the values cancel out. Nice!

[43]:

fn = arange(0,10,.001)
Gn = 4*sinc(fn)**2 * sin(pi*fn)**2
Gn_cumsum = cumsum(Gn)
Gn_tot = sum(Gn)
plot(fn,Gn_cumsum/Gn_tot)
grid()
xlabel('Normalized Frequency $f\tau$')
ylabel('Fractional Power Containment');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_89_0.svg]

[44]:

fn_idx = np.nonzero(np.ravel(abs(Gn_cumsum/Gn_tot - 0.9)< 0.0005))[0]
fn_idx

[44]:

array([1446, 1447, 1448, 1449, 1450])

[45]:

print('The normalized 90 percent containment bandwidth is %2.2f Hz-s.' \
 % fn[1448])

The normalized 90 percent containment bandwidth is 1.45 Hz-s.

Filter Analysis

To facilitate the performance analysis of both discrete-time and continuous-time filters, the functions freqz_resp() and freqs_resp() are available (definitions below, respectively). With these functions you can quickly move from z-domain or s-domain rational system function coefficients to visualization of the filter frequency response * Magnitude * Magnitude in dB * Phase in radians * Group delay in samples or seconds (digital filter) * Group delay in seconds (analog filter)

[46]:

def freqz_resp(b,a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)):
 """
 A method for displaying digital filter frequency response magnitude,
 phase, and group delay. A plot is produced using matplotlib

 freq_resp(self,mode = 'dB',Npts = 1024)

 A method for displaying the filter frequency response magnitude,
 phase, and group delay. A plot is produced using matplotlib

 freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode = 'dB',Npts = 1024,fsize=(6,4))

 b = ndarray of numerator coefficients
 a = ndarray of denominator coefficents
 Dmin = start frequency as 10**Dmin
 Dmax = stop frequency as 10**Dmax
 mode = display mode: 'dB' magnitude, 'phase' in radians, or
 'groupdelay_s' in samples and 'groupdelay_t' in sec,
 all versus frequency in Hz
 Npts = number of points to plot; defult is 1024
 fsize = figure size; defult is (6,4) inches

 Mark Wickert, January 2015
 """
 f = np.arange(0,Npts)/(2.0*Npts)
 w,H = signal.freqz(b,a,2*np.pi*f)
 plt.figure(figsize=fsize)
 if mode.lower() == 'db':
 plt.plot(f*fs,20*np.log10(np.abs(H)))
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Gain (dB)')
 plt.title('Frequency Response - Magnitude')

 elif mode.lower() == 'phase':
 plt.plot(f*fs,np.angle(H))
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Phase (rad)')
 plt.title('Frequency Response - Phase')

 elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'):
 """
 Notes

 Since this calculation involves finding the derivative of the
 phase response, care must be taken at phase wrapping points
 and when the phase jumps by +/-pi, which occurs when the
 amplitude response changes sign. Since the amplitude response
 is zero when the sign changes, the jumps do not alter the group
 delay results.
 """
 theta = np.unwrap(np.angle(H))
 # Since theta for an FIR filter is likely to have many pi phase
 # jumps too, we unwrap a second time 2*theta and divide by 2
 theta2 = np.unwrap(2*theta)/2.
 theta_dif = np.diff(theta2)
 f_diff = np.diff(f)
 Tg = -np.diff(theta2)/np.diff(w)
 max_Tg = np.max(Tg)
 #print(max_Tg)
 if mode.lower() == 'groupdelay_t':
 max_Tg /= fs
 plt.plot(f[:-1]*fs,Tg/fs)
 plt.ylim([0,1.2*max_Tg])
 else:
 plt.plot(f[:-1]*fs,Tg)
 plt.ylim([0,1.2*max_Tg])
 plt.xlabel('Frequency (Hz)')
 if mode.lower() == 'groupdelay_t':
 plt.ylabel('Group Delay (s)')
 else:
 plt.ylabel('Group Delay (samples)')
 plt.title('Frequency Response - Group Delay')
 else:
 s1 = 'Error, mode must be "dB", "phase, '
 s2 = '"groupdelay_s", or "groupdelay_t"'
 print(s1 + s2)

[47]:

def freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode = 'dB',Npts = 1024,fsize=(6,4)):
 """
 A method for displaying analog filter frequency response magnitude,
 phase, and group delay. A plot is produced using matplotlib

 freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode='dB',Npts=1024,fsize=(6,4))

 b = ndarray of numerator coefficients
 a = ndarray of denominator coefficents
 Dmin = start frequency as 10**Dmin
 Dmax = stop frequency as 10**Dmax
 mode = display mode: 'dB' magnitude, 'phase' in radians, or
 'groupdelay', all versus log frequency in Hz
 Npts = number of points to plot; defult is 1024
 fsize = figure size; defult is (6,4) inches

 Mark Wickert, January 2015
 """
 f = np.logspace(Dmin,Dmax,Npts)
 w,H = signal.freqs(b,a,2*np.pi*f)
 plt.figure(figsize=fsize)
 if mode.lower() == 'db':
 plt.semilogx(f,20*np.log10(np.abs(H)))
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Gain (dB)')
 plt.title('Frequency Response - Magnitude')

 elif mode.lower() == 'phase':
 plt.semilogx(f,np.angle(H))
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Phase (rad)')
 plt.title('Frequency Response - Phase')

 elif mode.lower() == 'groupdelay':
 """
 Notes

 See freqz_resp() for calculation details.
 """
 theta = np.unwrap(np.angle(H))
 # Since theta for an FIR filter is likely to have many pi phase
 # jumps too, we unwrap a second time 2*theta and divide by 2
 theta2 = np.unwrap(2*theta)/2.
 theta_dif = np.diff(theta2)
 f_diff = np.diff(f)
 Tg = -np.diff(theta2)/np.diff(w)
 max_Tg = np.max(Tg)
 #print(max_Tg)
 plt.semilogx(f[:-1],Tg)
 plt.ylim([0,1.2*max_Tg])
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Group Delay (s)')
 plt.title('Frequency Response - Group Delay')
 else:
 print('Error, mode must be "dB" or "phase or "groupdelay"')

Example: Discrete-Time Chebyshev Type I Bandpass Filter

[48]:

import sk_dsp_comm.iir_design_helper as iird
import sk_dsp_comm.fir_design_helper as fird

[49]:

b1,a1,sos1 = iird.IIR_bpf(200,250,300,350,0.1,60.0,1000,'butter')
b2,a2,sos2 = iird.IIR_bpf(200,250,300,350,0.1,60.0,1000,'cheby1')

IIR butter order = 16.
IIR cheby1 order = 12.

[50]:

figure()
iird.freqz_resp_cas_list([sos1,sos2],'dB',1000)
ylim([-70,0])
grid();
figure()
iird.freqz_resp_cas_list([sos1,sos2],'groupdelay_t',1000)
grid();
figure()
iird.sos_zplane(sos2)

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/docs/lib/python3.7/site-packages/scikit_dsp_comm-1.1.0-py3.7.egg/sk_dsp_comm/iir_design_helper.py:346: RuntimeWarning: divide by zero encountered in log10
 plt.plot(f*fs,20*np.log10(np.abs(H)))
/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/docs/lib/python3.7/site-packages/scikit_dsp_comm-1.1.0-py3.7.egg/sk_dsp_comm/iir_design_helper.py:379: RuntimeWarning: divide by zero encountered in log10
 idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0]
/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/docs/lib/python3.7/site-packages/scikit_dsp_comm-1.1.0-py3.7.egg/sk_dsp_comm/iir_design_helper.py:379: RuntimeWarning: invalid value encountered in multiply
 idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0]

[50]:

(12, 12)

<Figure size 432x288 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_99_3.svg]

<Figure size 432x288 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_99_5.svg]

<Figure size 432x288 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_99_7.svg]

[51]:

b,a = signal.cheby1(5,.1,2*array([250,300])/1000,btype='bandpass')

[52]:

freqz_resp(b,a,mode='dB',fs=1000,fsize=(6,2))
grid()
ylim([-80,5]);
xlim([100,400]);
freqz_resp(b,a,mode='groupdelay_s',fs=1000,fsize=(6,2))
grid()
xlim([100,400]);

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_101_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_101_1.svg]

Example: Continuous-Time Bessel Bandpass Filter

[53]:

bc,ac = signal.bessel(7,2*pi*array([10.0,50.0])*1e6,btype='bandpass',analog=True)

[54]:

freqs_resp(bc,ac,6,9,mode='dB',fsize=(6,2))
grid()
ylim([-80,5]);
freqs_resp(bc,ac,6,9,mode='groupdelay',fsize=(6,2))
grid()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_104_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_104_1.svg]

Second-Order Butterworth Lowpass Response

Consider a 3rd-order analog Butterworth is the \(s\)-domain having transfer function \(H(s)\). Using the scipy.signal function butter() we find the coefficients to the rational transfer function of the form:

\begin{align}
 H(s) = \frac{\sum_{n=0}^M b_n s^n}{\sum_{n=0}^N a_n s^n}
\end{align}

[55]:

b3,a3 = signal.butter(3,2*pi*1,analog=True)
freqs_resp(b3,a3,-1,2,mode='dB',fsize=(6,2))
grid()
ylim([-80,5]);
freqs_resp(b3,a3,-1,2,mode='groupdelay',fsize=(6,2))
grid()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_107_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_107_1.svg]

Obtaining the Step Response via Simulation

Time domain simulation of continuous time system can be performed using the signal.lsim() function. You have to make sure the time step is sufficiently small relative to the filter bandwidth.

[56]:

t = arange(0,2,.0001)
xs = ss.step(t)
tout,ys,x_state = signal.lsim((b3,a3),xs,t)
plot(t,ys)
title(r'Third-Order Butterworth Step Response for $f_3 = 1$ Hz')
ylabel(r'Ste Response')
xlabel(r'Time (s)')
grid();

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_110_0.svg]

[1]:

%pylab inline
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d
import sk_dsp_comm.multirate_helper as mrh
import scipy.signal as signal
from IPython.display import Audio, display
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

[2]:

%config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Filter Design Using the Helper Modules

The Scipy package signal assists with the design of many digital filter types. As an alternative, here we explore the use of the filter design modules found in scikit-dsp-comm (https://github.com/mwickert/scikit-dsp-comm).

In this note we briefly explore the use of sk_dsp_comm.fir_design_helper and sk_dsp_comm.iir_design_helper. In the examples that follow we assume the import of these modules is made as follows:

import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d

The functions in these modules provide an easier and more consistent interface for both finte impulse response (FIR) (linear phase) and infinite impulse response (IIR) classical designs. Functions inside these modules wrap scipy.signal functions and also incorporate new functionality.

Design From Amplitude Response Requirements

With both fir_design_helper and iir_design_helper a design starts with amplitude response requirements, that is the filter passband critical frequencies, stopband critical frequencies, passband ripple, and stopband attenuation. The number of taps/coefficients (FIR case) or the filter order (IIR case) needed to meet these requirements is then determined and the filter coefficients are returned as an ndarray b for FIR, and for IIR both b and a arrays, and a second-order
sections sos 2D array, with the rows containing the corresponding cascade of second-order sections toplogy for IIR filters.

For the FIR case we have in the \(z\)-domain

\[H_\text{FIR}(z) = \sum_{k=0}^N b_k z^{-k}\]

with ndarray b = \([b_0, b_1, \ldots, b_N]\). For the IIR case we have in the \(z\)-domain

\[\begin{split}\begin{align}
 H_\text{IIR}(z) &= \frac{\sum_{k=0}^M b_k z^{-k}}{\sum_{k=1}^N a_k z^{-k}} \\
 &= \prod_{k=0}^{N_s-1} \frac{b_{k0} + b_{k1} z^{-1} + b_{k2} z^{-2}}{1 + a_{k1} z^{-1} + a_{k2} z^{-2}} = \prod_{k=0}^{N_s-1} H_k(z)
\end{align}\end{split}\]

where \(N_s = \lfloor(N+1)/2\rfloor\). For the b/a form the coefficients are arranged as

b = [b0, b1, ..., bM-1], the numerator filter coefficients
a = [a0, a1, ..., aN-1], the denominator filter ceofficients

For the sos form each row of the 2D sos array corresponds to the coefficients of \(H_k(z)\), as follows:

SOS_mat = [[b00, b01, b02, 1, a01, a02], #biquad 0
 [b10, b11, b12, 1, a11, a12], #biquad 1
 .
 .
 [bNs-10, bNs-11, bNs-12, 1, aNs-11, aNs-12]] #biquad Ns-1

Linear Phase FIR Filter Design

The primary focus of this module is adding the ability to design linear phase FIR filters from user friendly amplitude response requirements.

Most digital filter design is motivated by the desire to approach an ideal filter. Recall an ideal filter will pass signals of a certain of frequencies and block others. For both analog and digital filters the designer can choose from a variety of approximation techniques. For digital filters the approximation techniques fall into the categories of IIR or FIR. In the design of FIR filters two popular techniques are truncating the ideal filter impulse response and applying a window, and optimum
equiripple approximations Oppenheim2010 [https://www.amazon.com/Discrete-Time-Signal-Processing-3rd-Prentice-Hall/dp/0131988425/ref=sr_1_1?ie=UTF8&qid=1519940790&sr=8-1&keywords=oppenheim+discrete+time+signal+processing&dpID=51v48p99JjL&preST=_SX218_BO1,204,203,200_QL40_&dpSrc=srch]. Frequency sampling based approaches are also popular, but will not be considered here, even though scipy.signal supports all three. Filter design generally begins with a specification of the desired
frequency response. The filter frequency response may be stated in several ways, but amplitude response is the most common, e.g., state how \(H_c(j\Omega)\) or \(H(e^{j\omega}) = H(e^{j2\pi f/f_s})\) should behave. A completed design consists of the number of coefficients (taps) required and the coefficients themselves (double precision float or float64 in Numpy, and float64_t in C). Figure 1, below, shows amplitude response requirements in terms of filter gain and critical
frequencies for lowpass, highpass, bandpass, and bandstop filters. The critical frequencies are given here in terms of analog requirements in Hz. The sampling frequency is assumed to be in Hz. The passband ripple and stopband attenuation values are in dB. Note in dB terms attenuation is the negative of gain, e.g., -60 of stopband gain is equivalent to 60 dB of stopband attenuation.

[3]:

Image('300ppi/FIR_Lowpass_Highpass_Bandpass_Bandstop@300ppi.png',width='90%')

[3]:

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_3_0.png]

There are 10 filter design functions and one plotting function available in fir_design_helper.py. Four functions for designing Kaiser window based FIR filters and four functions for designing equiripple based FIR filters. Of the eight just described, they all take in amplitude response requirements and return a coefficients array. Two of the 10 filter functions are simply wrappers around the scipy.signal function signal.firwin() for designing filters of a specific order when one
(lowpass) or two (bandpass) critical frequencies are given. The wrapper functions fix the window type to the firwin default of hann (hanning). The remamining eight are described below in Table 1. The plotting function provides an easy means to compare the resulting frequency response of one or more designs on a single plot. Display modes allow gain in dB, phase in radians, group delay in samples, and group delay in seconds for a given sampling rate. This function, freq_resp_list(), works
for both FIR and IIR designs. Table 1 provides the interface details to the eight design functions where d_stop and d_pass are positive dB values and the critical frequencies have the same unit as the sampling frequency \(f_s\). These functions do not create perfect results so some tuning of of the design parameters may be needed, in addition to bumping the filter order up or down via N_bump.

[4]:

Image('300ppi/FIR_Kaiser_Equiripple_Table@300ppi.png',width='80%')

[4]:

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_5_0.png]

Design Examples

Example 1: Lowpass with \(f_s = 1\) Hz

For this 31 tap filter we choose the cutoff frequency to be \(F_c = F_s/8\), or in normalized form \(f_c = 1/8\).

[5]:

b_k = fir_d.firwin_kaiser_lpf(1/8,1/6,50,1.0)
b_r = fir_d.fir_remez_lpf(1/8,1/6,0.2,50,1.0)

Kaiser Win filter taps = 72.
Remez filter taps = 53.

[6]:

fir_d.freqz_resp_list([b_k,b_r],[[1],[1]],'dB',fs=1)
ylim([-80,5])
title(r'Kaiser vs Equal Ripple Lowpass')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Kaiser: %d taps' % len(b_k),r'Remez: %d taps' % len(b_r)),loc='best')
grid();

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_9_0.svg]

[7]:

b_k_hp = fir_d.firwin_kaiser_hpf(1/8,1/6,50,1.0)
b_r_hp = fir_d.fir_remez_hpf(1/8,1/6,0.2,50,1.0)

Kaiser Win filter taps = 72.
Remez filter taps = 53.

[8]:

fir_d.freqz_resp_list([b_k_hp,b_r_hp],[[1],[1]],'dB',fs=1)
ylim([-80,5])
title(r'Kaiser vs Equal Ripple Lowpass')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Kaiser: %d taps' % len(b_k),r'Remez: %d taps' % len(b_r)),loc='best')
grid();

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_11_0.svg]

[9]:

b_k_bp = fir_d.firwin_kaiser_bpf(7000,8000,14000,15000,50,48000)
b_r_bp = fir_d.fir_remez_bpf(7000,8000,14000,15000,0.2,50,48000)

Kaiser Win filter taps = 142.
Remez filter taps = 106.

[10]:

fir_d.freqz_resp_list([b_k_bp,b_r_bp],[[1],[1]],'dB',fs=48)
ylim([-80,5])
title(r'Kaiser vs Equal Ripple Bandpass')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Kaiser: %d taps' % len(b_k_bp),
 r'Remez: %d taps' % len(b_r_bp)),
 loc='lower right')
grid();

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_13_0.svg]

A Design Example Useful for Interpolation or Decimation

Here we consider a lowpass design that needs to pass frequencies from [0, 4000] Hz with a sampling rate of 96000 Hz. This scenario arises when building an interpolator using the classes of the scikit-dps-comm module multirate_helper.py to increase the sampling rate from 8000 Hz to 96000 Hz, or an interpolation factor of \(L = 12\). Note at the top of this notebook we have also have the import

import sk_dsp_comm.multirate_helper as mrh

so that some of the functionality can be accessed. For more details on the use of multirate_helper see [https://mwickert.github.io/scikit-dsp-comm/example_notebooks/multirate_helper/Multirate_Processing.html].

Start with an equalripple design having transition band centered on 4000 Hz with passband ripple of 0.5 dB and stopband attenuation of 60 dB.

[11]:

b_up = fir_d.fir_remez_lpf(3300,4300,0.5,60,96000)

Remez filter taps = 196.

[12]:

mr_up = mrh.multirate_FIR(b_up)

FIR filter taps = 196

	Consider the pole-zero configuration for this high-order filter

[13]:

Take a look at the pole-zero configuration of this very
high-order (many taps) linear phase FIR
mr_up.zplane()

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_18_0.svg]

	Check out the passband and stopband gains

[14]:

Verify the passband and stopband gains are as expected
mr_up.freq_resp('db',96000)

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_20_0.svg]

	See that the group delay is the expected value of \((N_\text{taps} - 1)/2 = 98\) samples

[15]:

(len(b_up-1))/2

[15]:

98.0

[16]:

Verify that the FIR design has constant group delay (N_taps - 1)/2 samples
mr_up.freq_resp('groupdelay_s',96000,[0,100])

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_23_0.svg]

The object mr_up can now be used for interpolation or decimation with a rate change factor of 12.

Traditional IIR Filter Design using the Bilinear Transform

The scipy.signal package fully supports the design of IIR digital filters from analog prototypes. IIR filters like FIR filters, are typically designed with amplitude response requirements in mind. A collection of design functions are available directly from scipy.signal for this purpose, in particular the function scipy.signal.iirdesign(). To make the design of lowpass, highpass, bandpass, and bandstop filters consistent with the module fir_design_helper.py the module
iir_design_helper.py was written. Figure 2, below, details how the amplitude response parameters are defined graphically.

[17]:

Image('300ppi/IIR_Lowpass_Highpass_Bandpass_Bandstop@300ppi.png',width='90%')

[17]:

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_26_0.png]

Within iir_design_helper.py there are four filter design functions and a collection of supporting functions available. The four filter design functions are used for designing lowpass, highpass, bandpass, and bandstop filters, utilizing Butterworth, Chebshev type 1, Chebyshev type 2, and elliptical filter prototypes. See
Oppenheim2010 [https://www.amazon.com/Discrete-Time-Signal-Processing-3rd-Prentice-Hall/dp/0131988425/ref=sr_1_1?ie=UTF8&qid=1519940790&sr=8-1&keywords=oppenheim+discrete+time+signal+processing&dpID=51v48p99JjL&preST=_SX218_BO1,204,203,200_QL40_&dpSrc=srch] and ECE 5650 notes Chapter 9 [http://www.eas.uccs.edu/~mwickert/ece5650/notes/N5650_9.pdf] for detailed design information. The function interfaces are described in Table 2.

[18]:

Image('300ppi/IIR_Table@300ppi.png',width='80%')

[18]:

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_28_0.png]

The filter functions return the filter coefficients in two formats:

	Traditional transfer function form as numerator coefficients b and denominator a coefficients arrays, and

	Cascade of biquadratic sections form using the previously introduced sos 2D array or matrix.

Both are provided to allow further analysis with either a direct form topology or the sos form. The underlying signal.iirdesign() function also provides a third option: a list of poles and zeros. The sos form desireable for high precision filters, as it is more robust to coefficient quantization, in spite using double precision coefficients in the b and a arrays.

Of the remaining support functions four are also described in Table 2, above. The most significant functions are freqz_resp_cas_list, available for graphically comparing the frequency response over several designs, and sos_zplane a function for plotting the pole-zero pattern. Both operate using the sos matrix. A transfer function form (b/a) for frequency response plotting, freqz_resp_list, is also present in the module. This function was first introduced in the FIR design
section. The frequency response function plotting offers modes for gain in dB, phase in radians, group delay in samples, and group delay in seconds, all for a given sampling rate in Hz. The pole-zero plotting function locates pole and zeros more accurately than sk_dsp_commsigsys.zplane, as the numpy function roots() is only solving quadratic polynomials. Also, repeated roots can be displayed as theoretically expected, and also so noted in the graphical display by superscripts next to the
pole and zero markers.

IIR Design Based on the Bilinear Transformation

There are multiple ways of designing IIR filters based on amplitude response requirements. When the desire is to have the filter approximation follow an analog prototype such as Butterworth, Chebychev, etc., is using the bilinear transformation. The function signal.iirdesign() described above does exactly this.

In the example below we consider lowpass amplitude response requirements and see how the filter order changes when we choose different analog prototypes.

Example: Lowpass Design Comparison

The lowpass amplitude response requirements given \(f_s = 48\) kHz are: 1. \(f_\text{pass} = 5\) kHz 2. \(f_\text{stop} = 8\) kHz 3. Passband ripple of 0.5 dB 4. Stopband attenuation of 60 dB

Design four filters to meet the same requirements: butter, cheby1, ,cheby2, and ellip:

[19]:

fs = 48000
f_pass = 5000
f_stop = 8000
b_but,a_but,sos_but = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter')
b_cheb1,a_cheb1,sos_cheb1 = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1')
b_cheb2,a_cheb2,sos_cheb2 = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2')
b_elli,a_elli,sos_elli = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip')

IIR butter order = 15.
IIR cheby1 order = 8.
IIR cheby2 order = 8.
IIR ellip order = 6.

Frequency Response Comparison

Here we compare the magnitude response in dB using the sos form of each filter as the input. The elliptic is the most efficient, and actually over achieves by reaching the stopband requirement at less than 8 kHz.

[20]:

iir_d.freqz_resp_cas_list([sos_but,sos_cheb1,sos_cheb2,sos_elli],'dB',fs=48)
ylim([-80,5])
title(r'IIR Lowpass Compare')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Butter order: %d' % (len(a_but)-1),
 r'Cheby1 order: %d' % (len(a_cheb1)-1),
 r'Cheby2 order: %d' % (len(a_cheb2)-1),
 r'Elliptic order: %d' % (len(a_elli)-1)),loc='best')
grid();

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_33_0.svg]

Next plot the pole-zero configuration of just the butterworth design. Here we use the a special version of ss.zplane that works with the sos 2D array.

[21]:

iir_d.sos_zplane(sos_but)

[21]:

(15, 15)

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_35_1.svg]

Note the two plots above can also be obtained using the transfer function form via iir_d.freqz_resp_list([b],[a],'dB',fs=48) and ss.zplane(b,a), respectively. The sos form will yield more accurate results, as it is less sensitive to coefficient quantization. This is particularly true for the pole-zero plot, as rooting a 15th degree polynomial is far more subject to errors than rooting a simple quadratic.

For the 15th-order Butterworth the bilinear transformation maps the expected 15 s-domain zeros at infinity to \(z=-1\). If you use sk_dsp_comm.sigsys.zplane() you will find that the 15 zeros at are in a tight circle around \(z=-1\), indicating polynomial rooting errors. Likewise the frequency response will be more accurate.

Signal filtering of ndarray x is done using the filter designs is done using functions from scipy.signal:

	For transfer function form y = signal.lfilter(b,a,x)

	For sos form y = signal.sosfilt(sos,x)

A Half-Band Filter Design to Pass up to \(W/2\) when \(f_s = 8\) kHz

Here we consider a lowpass design that needs to pass frequencies up to \(f_s/4\). Specifically when \(f_s = 8000\) Hz, the filter passband becomes [0, 2000] Hz. Once the coefficients are found a mrh.multirate object is created to allow further study of the filter, and ultimately implement filtering of a white noise signal.

Start with an elliptical design having transition band centered on 2000 Hz with passband ripple of 0.5 dB and stopband attenuation of 80 dB. The transition bandwidth is set to 100 Hz, with 50 Hz on either side of 2000 Hz.

[22]:

Elliptic IIR Lowpass
b_lp,a_lp,sos_lp = iir_d.IIR_lpf(1950,2050,0.5,80,8000.,'ellip')
mr_lp = mrh.multirate_IIR(sos_lp)

IIR ellip order = 11.
IIR filter order = 11

[23]:

mr_lp.freq_resp('db',8000)

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_39_0.svg]

Pass Gaussian white noise of variance \(\sigma_x^2 = 1\) through the filter. Use a lot of samples so the spectral estimate can accurately form \(S_y(f) = \sigma_x^2\cdot |H(e^{j2\pi f/f_s})|^2 = |H(e^{j2\pi f/f_s})|^2\).

[24]:

x = randn(1000000)
y = mr_lp.filter(x)
psd(x,2**10,8000);
psd(y,2**10,8000);
title(r'Filtering White Noise Having $\sigma_x^2 = 1$')
legend(('Input PSD','Output PSD'),loc='best')
ylim([-130,-30])

[24]:

(-130, -30)

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_41_1.svg]

[25]:

fs = 8000
print('Expected PSD of %2.3f dB/Hz' % (0-10*log10(fs),))

Expected PSD of -39.031 dB/Hz

Amplitude Response Bandpass Design

Here we consider FIR and IIR bandpass designs for use in an SSB demodulator to remove potential adjacent channel signals sitting either side of a frequency band running from 23 kHz to 24 kHz.

[26]:

b_rec_bpf1 = fir_d.fir_remez_bpf(23000,24000,28000,29000,0.5,70,96000,8)
fir_d.freqz_resp_list([b_rec_bpf1],[1],mode='dB',fs=96000)
ylim([-80, 5])
grid();

Remez filter taps = 241.

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_44_1.svg]

The group delay is flat (constant) by virture of the design having linear phase.

[27]:

b_rec_bpf1 = fir_d.fir_remez_bpf(23000,24000,28000,29000,0.5,70,96000,8)
fir_d.freqz_resp_list([b_rec_bpf1],[1],mode='groupdelay_s',fs=96000)
grid();

Remez filter taps = 241.

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_46_1.svg]

Compare the FIR design with an elliptical design:

[28]:

b_rec_bpf2,a_rec_bpf2,sos_rec_bpf2 = iir_d.IIR_bpf(23000,24000,28000,29000,
 0.5,70,96000,'ellip')
with np.errstate(divide='ignore'):
 iir_d.freqz_resp_cas_list([sos_rec_bpf2],mode='dB',fs=96000)
ylim([-80, 5])
grid();

IIR ellip order = 14.

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_48_1.svg]

This high order elliptic has a nice tight amplitude response for minimal coefficients, but the group delay is terrible:

[29]:

with np.errstate(divide='ignore', invalid='ignore'): #manage singularity warnings
 iir_d.freqz_resp_cas_list([sos_rec_bpf2],mode='groupdelay_s',fs=96000)
#ylim([-80, 5])
grid();

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_50_0.svg]

[1]:

%pylab inline
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d
import sk_dsp_comm.multirate_helper as mrh
import scipy.signal as signal
from IPython.display import Audio, display
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

[2]:

%config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Multirate Signal Processing Using multirate_helper

In this section the classes multirate_FIR and multirate_IIR, found in the module sk_dsp_comm.multirate_helper, are discussed with the aim of seeing how they can be used to filter, interpolate (upsample and filter), and decimate (filter and downsample) discrete time signals. Fundamentally the processing consists of two elements: (1) and upsampler or downsampler and (2) a lowpass filter.

Fundamentally this modules provides classes to change the sampling rate by an integer factor, either up, interpolation or down, decimation, with integrated filtering to supress spectral images or aliases, respectively. The top level block diagram of the interpolator and decimator are given in the following two figures. The frequencies given in the figures assume that the interpolator is rate chainging from 8 ksps to 96 ksps (\(L=12\)) and the decimator is rate changing from 96 ksps to 8
ksps (\(M=12\)). This is for example purposes only. The FIR/IIR filter cutoff frequency will in general be \(f_c = f_\text{s,out}/(2L)\) for the decimator and \(f_c = f_\text{s,in}/(2M)\). The primitives to implement the classes are available in sk_dsp_comm.sigsys and scipy.signal.

[3]:

Image('300ppi/Interpolator_Top_Level@300ppi.png',width='60%')

[3]:

[image: ../_images/nb_examples_Multirate_Processing_3_0.png]

[4]:

Image('300ppi/Decimator_Top_Level@300ppi.png',width='60%')

[4]:

[image: ../_images/nb_examples_Multirate_Processing_4_0.png]

The upsample block, shown above with arrow pointing up and integer \(L=12\) next to the arrow, takes the input sequence and produces the output sequence by inserting \(L-1\) (as shown here 11) zero samples between each input sample. The downsample block, shown above with arrow pointing down and integer \(M=12\) next to the arrow, takes the input sequence and retains at the output sequence every \(M\)th (as shown here 12th) sample.

The impact of these blocks in the frequency domain is a little harder to explain. In words, the spectrum at the output of the upsampler is compressed by the factor \(L\), such that it will contain \(L\) spectral images, including the fundamental image centered at \(f = 0\), evenly spaced up to the sampling \(f_s\). Overall the spectrum of \(x_\text{up}[n]\) is of course periodic with respect to the sampling rate. The lowpass filter interpolates signal sample values from the
non-zero samples where the zero samples reside. It is this interpolation that effectively removed or suppresses the spectral images outside the interval \(|f| > f_s/(2L)\).

For the downsampler the input spectrum is stretched along the frequency axis by the factor \(M\), with aliasing from frequency bands outside \(|f| < f_s/(2M)\). To avoid aliasing the lowpass filter blocks input signals for \(f > f_s/(2M)\).

To get started using the module you will need an import similar to:

import sk_dsp_comm.multirate_helper as mrh

The rate_change Class

We start with the description of a third class, mrh.rate_change, which is simplistic, offering little user interaction, but automatically designs the required lowpass filter you see in the above block diagrams. Below is a table which describes this class:

[5]:

Image('300ppi/Multirate_Table1@300ppi.png',width='85%')

[5]:

[image: ../_images/nb_examples_Multirate_Processing_6_0.png]

This class is used in the analog modulation demos for the ECE 4625/5625 Chapter 3 Jupyter notebook [http://www.eas.uccs.edu/~mwickert/ece5625/lecture_notes/5625_Chapter_3_IPYNB.zip]. Using this class you can quickly create a interpolation or decimation block with the necessary lowpass filter automatically designed and implemented. Fine tuning of the filter is limited to choosing the filter order and the cutoff frequency as a fraction of the signal bandwidth given the rate change integer,
\(L\) or \(M\). The filter type is also limited to Butterworth or Chebyshev type 1 having passband ripple of 0.05 dB.

A Simple Example

Pass a sinusoidal signal through an \(L=4\) interpolator. Verify that spectral images occur with the use of the interpolation lowpass filter.

[6]:

fs_in = 8000
M = 4
fs_out = M*fs_in
rc1 = mrh.rate_change(M) # Rate change by 4
n = arange(0,1000)
x = cos(2*pi*1000/fs_in*n)
x_up = ss.upsample(x,4)
y = rc1.up(x)

Time Domain

[7]:

subplot(211)
stem(n[500:550],x_up[500:550]);
ylabel(r'$x_{up}[n]$')
title(r'Upsample by $L=4$ Output')
#ylim(-100,-10)
subplot(212)
stem(n[500:550],y[500:550]);
ylabel(r'$y[n]$')
xlabel(r'')
title(r'Interpolate by $L=4$ Output')
#ylim(-100,-10)
tight_layout()

[image: ../_images/nb_examples_Multirate_Processing_10_0.svg]

	Clearly the lowpass interpolation filter has done a good job of filling in values for the zero samples

Frequency Domain

[8]:

subplot(211)
psd(x_up,2**10,fs_out);
ylabel(r'PSD (dB)')
title(r'Upsample by $L=4$ Output')
ylim(-100,-10)
subplot(212)
psd(y,2**10,fs_out);
ylabel(r'PSD (dB)')
title(r'Interpolate by $L=4$ Output')
ylim(-100,-10)
tight_layout()

[image: ../_images/nb_examples_Multirate_Processing_13_0.svg]

	The filtering action of the LPF does its best to suppress the images at 7000, 9000, and 15000 Hz.

The multirate_FIR Class

With this class you implement an object that can filter, interpolate, or decimate a signal. Additionally support methods drill into the characteristics of the lowpass filter at the heart of the processing block. To use this class the user must supply FIR filter coefficients that implement a lowpass filter with cutoff frequency appropriate for the desired interpolation of decimation factor. The module sk_dsp_com.FIR_design_helper is capable of delivering the need filter coefficients array.
See FIR design helper notes [https://mwickert.github.io/scikit-dsp-comm/example_notebooks/FIR_IIR_design_helper/FIR_and_IIR_Filter_Design.html] for multirate filter design examples.

With FIR coefficients in hand it is an easy matter to create an multirate FIR object capable of filtering, interpolation, or decimation. The details of the class interface are given in Table 2 below.

[9]:

Image('300ppi/Multirate_Table2@300ppi.png',width='85%')

[9]:

[image: ../_images/nb_examples_Multirate_Processing_16_0.png]

Notice that the class also provides a means to obtain frequency response plots and pole-zero plots directly from the instantiated multirate objects.

FIR Interpolator Design Example

Here we take the earlier lowpass filter designed to interpolate a signal being upsampled from \(f_{s1} = 8000\) kHz to \(f_{s2} = 96\) kHz. The upsampling factor is \(L = f_{s2}/f_{s1} = 12\). The ideal interpolation filter should cutoff at \(f_{s1}/2 = f_{s2}/(2\cdot 12) = 8000/2 = 4000\) Hz.

Recall the upsampler (y = ss.upsampler(x, L)) inserts \(L-1\) samples between each input sample. In the frequency domain the zero insertion replicates the input spectrum on \([0,f_{s1}/2]\) \(L\) times over the interval \([0,f_{s2}]\) (equivalently \(L/2\) times on the inteval \([0f_{s2}/2]\). The lowpass interpolation filter serves to removes the images above \(f_{s2}/(2L)\) in the frequency domain and in so doing filling in the zeros samples with waveform
interpolants in the time domain.

[10]:

Design the filter core for an interpolator used in changing the sampling rate from 8000 Hz
to 96000 Hz
b_up = fir_d.fir_remez_lpf(3300,4300,0.5,60,96000)
Create the multirate object
mrh_up = mrh.multirate_FIR(b_up)

Remez filter taps = 196.
FIR filter taps = 196

As an input consider a sinusoid at 1 kHz and observe the interpolator output spectrum compared with the input spectrum.

[11]:

Sinusoidal test signal
n = arange(10000)
x = cos(2*pi*1000/8000*n)
Interpolate by 12 (upsample by 12 followed by lowpass filter)
y = mrh_up.up(x,12)

[12]:

Plot the results
subplot(211)
psd(x,2**12,8000);
title(r'1 KHz Sinusoid Input to $L=12$ Interpolator')
ylabel(r'PSD (dB)')
ylim([-100,0])
subplot(212)
psd(y,2**12,12*8000)
title(r'1 KHz Sinusoid Output from $L=12$ Interpolator')
ylabel(r'PSD (dB)')
ylim([-100,0])
tight_layout()

[image: ../_images/nb_examples_Multirate_Processing_21_0.svg]

In the above spectrum plots notice that images of the input 1 kHz sinusoid are down \(\simeq 60\) dB, which is precisely the stop band attenuation provided by the interpolation filter. The variation is due to the stopband ripple.

The multirate_IIR Class

With this class, as with multirate_FIR you implement an object that can filter, interpolate, or decimate a signal. The filter in this case is a user supplied IIR filter in second-order sections (sos) form. Additionally support methods drill into the characteristics of the lowpass filter at the heart of the procssing block. The module sk_dsp_com.IIR_design_helper is capable of delivering the need filter coefficients array. See IIR design helper
notes [https://mwickert.github.io/scikit-dsp-comm/example_notebooks/FIR_IIR_design_helper/FIR_and_IIR_Filter_Design.html] for multirate filter design examples.

With IIR coefficients in hand it is an easy matter to create an multirate IIR object capable of filtering, interpolation, or decimation. The details of the class interface are given in Table 3 below.

[13]:

Image('300ppi/Multirate_Table3@300ppi.png',width='85%')

[13]:

[image: ../_images/nb_examples_Multirate_Processing_24_0.png]

IIR Decimator Design Example

Whan a signal is decimated the signal is first lowpass filtered then downsampled. The lowpass filter serves to prevent aliasing as the sampling rate is reduced. Downsampling by \(M\) (y = ss.downsample(x, M)) removes \(M-1\) sampling for every \(M\) sampling input or equivalently retains one sample out of \(M\). The lowpass prefilter has cutoff frequency equal to the folding frequency of the output sampling rate, i.e., \(f_c = f_{s2}/2\). Note avoid confusion with the
project requirements, where the decimator is needed to take a rate \(f_{s2}\) signal back to \(f_{s1}\), let the input sampling rate be \(f_{s2} = 96000\) HZ and the output sampling rate be \(f_{s1} = 8000\) Hz. The input sampling rate is \(M\) times the output rate, i.e., \(f_{s2} = Mf_{s1}\), so you design the lowpass filter to have cutoff \(f_c = f_{s2}/(2\cdot L)\).

ECE 5625 Important Observation: In the coherent SSB demodulator of Project 1, the decimator can be conveniently integrated with the lowpass filter that serves to remove the double frequency term.

In the example that follows a Chebyshev type 1 lowpass filter is designed to have cutoff around 4000 Hz. A sinusoid is used as a test input signal at sampling rate 96000 Hz.

[14]:

Design the filter core for a decimator used in changing the
sampling rate from 96000 Hz to 8000 Hz
b_dn, a_dn, sos_dn = iir_d.IIR_lpf(3300,4300,0.5,60,96000,'cheby1')
Create the multirate object
mrh_dn = mrh.multirate_IIR(sos_dn)
mrh_dn.freq_resp('dB',96000)
title(r'Decimation Filter Frequency Response - Magnitude');

IIR cheby1 order = 12.
IIR filter order = 12

[image: ../_images/nb_examples_Multirate_Processing_26_1.svg]

	Note the Chebyshev lowpass filter design above is very efficient compared with the 196-tap FIR lowpass designed for use in the interpolator. It is perhaps a better overall choice. The FIR has linear phase and the IIR filter does not, but for the project this is not really an issue.

As an input consider a sinusoid at 1 kHz and observe the interpolator output spectrum compared with the input spectrum.

[15]:

Sinusoidal test signal
n = arange(100000)
x = cos(2*pi*1000/96000*n)
Decimate by 12 (lowpass filter followed by downsample by 12)
y = mrh_dn.dn(x,12)

[16]:

Plot the results
subplot(211)
psd(x,2**12,96000);
title(r'1 KHz Sinusoid Input to $M=12$ Decimator')
ylabel(r'PSD (dB)')
ylim([-100,0])
subplot(212)
psd(y,2**12,8000)
title(r'1 KHz Sinusoid Output from $M=12$ Decimator')
ylabel(r'PSD (dB)')
ylim([-100,0])
tight_layout()

[image: ../_images/nb_examples_Multirate_Processing_29_0.svg]

[1]:

%pylab inline
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.pyaudio_helper as pah
import sk_dsp_comm.fir_design_helper as fir_d
import scipy.signal as signal
import scipy.io as io
from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets
from IPython.display import Audio, display
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

[2]:

pylab.rcParams['savefig.dpi'] = 100 # default 72
%config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Introduction

A simplified block diagram of PyAudio streaming-based (nonblocking) signal processing when using pyaudio_helper and ipython widgets.

[3]:

Image("audio_files/pyaudio_dsp_IO.png", width="90%")

[3]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_3_0.png]

Available Audio I/O Devices

If you add or delete devices by plugging or unplugging USB audio ibterface, this list becomdes invalid. Restart the kernel and run again to get the correct device index list. For two channel apps both the input and output devices must support two channels. For the Sabrent USB audio devices, which has one input and two outputs, Windows for example may improperly list the devices as having two inputs.

pah.available_devices()

Index 0 device name = Built-in Microph, inputs = 2, outputs = 0

Index 1 device name = Built-in Output, inputs = 0, outputs = 2

Real-Time Loop Through

Here we set up a simple callback function that passes the input samples directly to the output. The module pyaudio_support provides a class for managing a pyaudio stream object, capturing the samples processed by the callback function, and collection of performance metrics. Once the callback function is written/declared a DSP_io_stream object can be created and then the stream(Tsec) method can be executed to start the input/output processing, e.g.,

import pyaudio_helper as pah

DSP_IO = pah.DSP_io_stream(callback,in_idx, out_idx)
DSP_IO.interactive_stream(Tsec = 2, numChan = 1)

where in_idx is the index of the chosen input device found using available_devices() and similarly out_idx is the index of the chosen output device.

	The callback function must be written first as the function name used by the object to call the callback.

No globals required here as there is no instrumentation configured, externally defined algorithm coefficients, and no widgets being used.

[4]:

define a pass through, y = x, callback
def callback(in_data, frame_count, time_info, status):
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 #***
 # DSP operations here
 # Here we simply pass the input to the output, i.e.
 # y[n] = x[n]
 x = in_data_nda.astype(float32)
 y = x
 # Typically more DSP code here
 #
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 # Convert ndarray back to bytes
 return y.tobytes(), pah.pyaudio.paContinue

This callback makes use of the instrumentation capabilities of the DSP_io_stream and also has a simple lowpass filter waiting in-the-wings if a line of code in commented out and a following line is uncomments, e.g.,

#y = x
Typically more DSP code here
y, zi = signal.lfilter(b,a,x,zi=zi) # for FIR or simple IIR

Notice that globals are now used for the DSP_IO object, the filter coefficients in arrays, a and b, and also the filter states held in the array zi. In its present form te filtering is commented out, but can be uncommented to allow a simple 1st-order IIR lowpass filter to operate on one channel of audio streaming through the system.

[5]:

Add a simple IIR LPF
fs = 48000 # Assummed sampling rate
f3 = 1000 # Hz
a = [1, -exp(-2*pi*f3/fs)]
b = [1 - exp(-2*pi*f3/fs)]
zi = signal.lfiltic(b,a,[0])

[6]:

define a pass through, y = x, callback
def callback(in_data, frame_length, time_info, status):
 global DSP_IO, b, a, zi
 DSP_IO.DSP_callback_tic()
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 #***
 # DSP operations here
 # Here we apply a linear filter to the input
 x = in_data_nda.astype(float32)
 y = x
 # Typically more DSP code here
 #y, zi = signal.lfilter(b,a,x,zi=zi) # for FIR or simple IIR
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples(y)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 # Convert ndarray back to bytes
 #return (in_data_nda.tobytes(), pyaudio.paContinue)
 return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback,in_idx=0,out_idx=1,fs=48000,Tcapture=0)

Index 0 device name = Built-in Microph, inputs = 2, outputs = 0

Index 1 device name = Built-in Output, inputs = 0, outputs = 2

DSP_IO.interactive_stream(Tsec=0,numChan=1)

[7]:

Image("audio_files/start_stop_stream.png", width='55%')

[7]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_16_0.png]

With the iMic plugged in the input/output device indices can be reconfigured to use the iMic index for both the input output streams. The Analog Discovery (AD2) [https://store.digilentinc.com/analog-discovery-2-100msps-usb-oscilloscope-logic-analyzer-and-variable-power-supply/] is then used to drive a white noise test signal into the ADC and capture the output from the DAC. This allows us to measure the ADC-DAC frequency response using a long-term time average spectral estimate capabilities
of the AD2. A second test capture is to use DSP_IO.DSP_capture_add_samples(y) to capture the response of the ADC alone, and perform spectral analysis here in the Jupyter notebook. For this capture we set Tcapture=20s two cells above and Tsec=20 one cell above. A comparison of the ADC-alone and ADC-DAC spectrum normalized to look like the frequency response is done in the cell below.

[8]:

f_AD,Mag_AD = loadtxt('audio_files/Loop_through_noise_SA_iMic.csv',
 delimiter=',',skiprows=6,unpack=True)
plot(f_AD,Mag_AD-Mag_AD[100])
ylim([-10,5])
xlim([0,20e3])
ylabel(r'ADC Gain Flatness (dB)')
xlabel(r'Frequency (Hz)')
legend((r'ADC-DAC from AD2 SA dB Avg',))
title(r'Loop Through Gain Flatness using iMic at $f_s = 48$ kHz')
grid();

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_18_0.svg]

The callback stats when capturing data using DSP_IO.DSP_capture_add_samples(y) and a plot of the time domain samples.

Nstop = 1000
plot(arange(0,len(DSP_IO.data_capture[:Nstop]))/48000,DSP_IO.data_capture[:Nstop])
DSP_IO.stream_stats()

Note for a attributes used in the above examples the frame_length is always 1024 samples and the sampling rate \(f_s = 48\) ksps. The ideal callback period is this

\[T_{cb} = \frac{1024}{480100} = 21.33\ \text{(ms)}\]

Next consider what the captures tic and toc data revels about the processing. Calling the method cb_active_plot() produces a plot similar to what an electrical engineer would see what using a logic analyzer to show the time spent in an interrupt service routine of an embedded system. The latency is also evident. You expect to see a minimum latency of two frame lengths (input buffer fill and output buffer fill),e.g.,

\[T_\text{latency} >= 2\times \frac{1024}{48000} \times 1000 = 42.6\ \text{(ms)}\]

The host processor is multitasking, so the latency can be even greater. A true real-time DSP system would give the signal processing high priority and hence much lower is expected, particularly if the frame_length can be made small.

Real-Time Filtering

Here we set up a callback function that filters the input samples and then sends them to the output.

import pyaudio_helper as pah

DSP_IO = pah.DSP_io_stream(callback,in_idx, out_idx)
DSP_IO.interactive_stream(2,1)

where in_idx is the index of the chosen input device found using available_devices() and similarly out_idx is the index of the chosen output device.

	The callback function must be written first as the function name is used by the object to call the callback

	To demonstrate this we first design some filters that can be used in testing

[9]:

b = fir_d.fir_remez_bpf(2700,3200,4800,5300,.5,50,48000,18)
a = [1]
fir_d.freqz_resp_list([b],[1],'dB',48000)
ylim([-60,5])
grid();
zi = signal.lfiltic(b,a,[0])

Remez filter taps = 192.

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_24_1.svg]

[10]:

f_AD,Mag_AD = loadtxt('audio_files/FIR_BPF_2700_3200_4800_5300_p5dB_50dB_48k.csv',
 delimiter=',',skiprows=6,unpack=True)
plot(f_AD,Mag_AD-max(Mag_AD)+1)
f = arange(0,20000,10)
w,H_BPF = signal.freqz(b,1,2*pi*f/48000)
plot(f,20*log10(abs(H_BPF)))
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
legend((r'AD2 Noise Measured',r'Design Theory'))
title(r'4 kHz 182-Tap FIR Bandpass Design at $f_s = 48$ kHz')
ylim([-60,5])
xlim([2000,8000])
grid();

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_25_0.svg]

[11]:

Design an IIR Notch
b, a = ss.fir_iir_notch(2000,48000,r= 0.9)
fir_d.freqz_resp_list([b],[a],'dB',48000,4096)
ylim([-60,5])
grid();
zi = signal.lfiltic(b,a,[0])

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_26_0.svg]

Create some global variables for the filter coefficients and the filter state array (recall that a filter has memory).

[12]:

define callback (#2)
def callback2(in_data, frame_count, time_info, status):
 global DSP_IO, b, a, zi
 DSP_IO.DSP_callback_tic()
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 #***
 # DSP operations here
 # Here we apply a linear filter to the input
 x = 5*in_data_nda.astype(float32)
 #y = x
 # The filter state/(memory), zi, must be maintained from frame-to-frame
 # for FIR or simple IIR
 y, zi = signal.lfilter(b,a,x,zi=zi)
 # for IIR use second-order sections
 #y, zi = signal.sosfilt(sos,x,zi=zi)
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples(y)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback2,2,2,fs=48000,Tcapture=0)

DSP_IO.interactive_stream(Tsec=0,numChan=1)

[13]:

Image("audio_files/start_stop_stream.png", width='55%')

[13]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_31_0.png]

Playback Only Using an Audio Loop

A playback audio loop is created using the pah.loop_audio class filled with samples input from a wav file. In the example below we take a two-channel (stereo) wav file and convert to one channel.

[14]:

define callback (3)
Here we configure the callback to play back a wav file
def callback3(in_data, frame_count, time_info, status):
 global DSP_IO, x
 DSP_IO.DSP_callback_tic()

 # Ignore in_data when generating output only
 #***
 global x
 # Note wav is scaled to [-1,1] so need to rescale to int16
 y = 32767*x.get_samples(frame_count)
 # Perform real-time DSP here if desired
 #
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples(y)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 return y.tobytes(), pah.pyaudio.paContinue

fs, x_wav2 = ss.from_wav('Music_Test.wav')
x_wav = (x_wav2[:,0] + x_wav2[:,1])/2
x = pah.loop_audio(x_wav)
DSP_IO = pah.DSP_io_stream(callback3,0,1,fs=44100,Tcapture=2)
DSP_IO.interactive_stream(20) # play for 20s but capture only the last 2s

[15]:

Image("audio_files/start_stop_stream.png", width='55%')

[15]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_35_0.png]

Npts = 96000
Nstart = 0
plot(arange(len(DSP_IO.data_capture[Nstart:Nstart+Npts]))*1000/44100,
 DSP_IO.data_capture[Nstart:Nstart+Npts]/2**(16-1))
title(r'A Portion of the capture buffer')
ylabel(r'Normalized Amplitude')
xlabel(r'Time (ms)')
grid();

[16]:

Image("audio_files/music_buffer_plot.png", width="75%")

[16]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_37_0.png]

Finally, the spectrum of the output signal. To apply custom scaling we use a variation of psd() found in the sigsys module. If we are plotting the spectrum of white noise sent through a filter, the output PSD will be of the form \(\sigma_w^2|H(e^{j2\pi f/f_s})|^2\), where \(\sigma_w^2\) is the variance of the noise driving the filter. You may choose to overlay a plot of

Widgets Examples

Stereo Gain Sliders

[17]:

L_gain = widgets.FloatSlider(description = 'L Gain',
 continuous_update = True,
 value = 1.0,
 min = 0.0,
 max = 2.0,
 step = 0.01,
 orientation = 'vertical')
R_gain = widgets.FloatSlider(description = 'R Gain',
 continuous_update = True,
 value = 1.0,
 min = 0.0,
 max = 2.0,
 step = 0.01,
 orientation = 'vertical')

#widgets.HBox([L_gain, R_gain])

[18]:

L and Right Gain Sliders
def callback(in_data, frame_count, time_info, status):
 global DSP_IO, L_gain, R_gain
 DSP_IO.DSP_callback_tic()
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 # separate left and right data
 x_left,x_right = DSP_IO.get_LR(in_data_nda.astype(float32))
 #***
 # DSP operations here
 y_left = x_left*L_gain.value
 y_right = x_right*R_gain.value

 #***
 # Pack left and right data together
 y = DSP_IO.pack_LR(y_left,y_right)
 # Typically more DSP code here
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples_stereo(y_left,y_right)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 # Convert ndarray back to bytes
 #return (in_data_nda.tobytes(), pyaudio.paContinue)
 return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback,0,1,fs=48000,Tcapture=0)
DSP_IO.interactive_stream(0,2)
widgets.HBox([L_gain, R_gain])

[19]:

Image("audio_files/left_right_gain.png", width="65%")

[19]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_44_0.png]

Cross Panning

[20]:

panning = widgets.FloatSlider(description = 'Panning (%)',
 continuous_update = True, # Continuous updates
 value = 50.0,
 min = 0.0,
 max = 100.0,
 step = 0.1,
 orientation = 'horizontal')
#display(panning)

[21]:

Panning
def callback(in_data, frame_count, time_info, status):
 global DSP_IO, panning
 DSP_IO.DSP_callback_tic()
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 # separate left and right data
 x_left,x_right = DSP_IO.get_LR(in_data_nda.astype(float32))
 #***
 # DSP operations here
 y_left = (100-panning.value)/100*x_left \
 + panning.value/100*x_right
 y_right = panning.value/100*x_left \
 + (100-panning.value)/100*x_right

 #***
 # Pack left and right data together
 y = DSP_IO.pack_LR(y_left,y_right)
 # Typically more DSP code here
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples_stereo(y_left,y_right)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 # Convert ndarray back to bytes
 #return (in_data_nda.tobytes(), pyaudio.paContinue)
 return y.tobytes(), pah.pyaudio.paContinue

FRAMES = 512
Create streaming object
DSP_IO = pah.DSP_io_stream(callback,0,1,
 fs=48000,
 frame_length = FRAMES,
 Tcapture=0)

interactive_stream runs in a thread
#so widget can be used
DSP_IO.interactive_stream(0,2)

display panning widget
display(panning)

[22]:

Image("audio_files/cross_panning.png", width='55%')

[22]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_49_0.png]

Three Band Equalizer

Here we consider a three-band equalizer operating on a music loop. Each peaking filter has system function in the \(z\)-domain defined by

\[H_{pk}(z) = C_\text{pk}\frac{1 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}\]

where the filter coefficients are given by

\[\begin{split}\begin{align}
C_\text{pk} &= \frac{1+k_q\mu}{1+k_q}\\
 k_q &= \frac{4}{1+\mu} \tan\left(\frac{2\pi f_c/f_s}{2Q}\right) \\
 b_1 &= \frac{-2\cos(2\pi f_c/f_s)}{1+k_q\mu} \\
 b_2 &= \frac{1-k_q\mu}{1+k_q\mu} \\
 a_1 &= \frac{-2\cos(2\pi f_c/f_s)}{1+k_q} \\
 a_2 &= \frac{1 - k_q}{1+k_q}
\end{align}\end{split}\]

where

\[\mu = 10^{G_\text{dB}/20},\ \ Q \in [2, 10]\]

and and \(f_c\) is the center frequency in Hz relative to sampling rate \(f_s\) in Hz, and \(G_\text{dB}\) is the peaking filter gain in dB. Conveniently, the function peaking is available in the module sk_dsp_comm.sigsys.

[23]:

band1 = widgets.FloatSlider(description = '100 Hz',
 continuous_update = True, # Continuous updates
 value = 20.0,
 min = -20.0,
 max = 20.0,
 step = 1,
 orientation = 'vertical')
band2 = widgets.FloatSlider(description = '1000 Hz',
 continuous_update = True, # Continuous updates
 value = 10.0,
 min = -20.0,
 max = 20.0,
 step = 1,
 orientation = 'vertical')
band3 = widgets.FloatSlider(description = '8000 Hz',
 continuous_update = True, # Continuous updates
 value = -10.0,
 min = -20.0,
 max = 20.0,
 step = 1,
 orientation = 'vertical')

Gain = widgets.FloatSlider(description = 'Gain',
 continuous_update = True,
 value = 0.2,
 min = 0.0,
 max = 2.0,
 step = 0.01,
 orientation = 'vertical')

#widgets.HBox([Gain,band1,band2,band3])

[24]:

b_b1,a_b1 = ss.peaking(band1.value,100,Q=3.5,fs=48000)
zi_b1 = signal.lfiltic(b_b1,a_b1,[0])
b_b2,a_b2 = ss.peaking(band2.value,1000,Q=3.5,fs=48000)
zi_b2 = signal.lfiltic(b_b2,a_b2,[0])
b_b3,a_b3 = ss.peaking(band3.value,8000,Q=3.5,fs=48000)
zi_b3 = signal.lfiltic(b_b3,a_b3,[0])
b_12,a_12 = ss.cascade_filters(b_b1,a_b1,b_b2,a_b2)
b_123,a_123 = ss.cascade_filters(b_12,a_12,b_b3,a_b3)
f = logspace(log10(50),log10(10000),100)
w,H_123 = signal.freqz(b_123,a_123,2*pi*f/48000)
semilogx(f,20*log10(abs(H_123)))
ylim([-20,20])
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
grid();

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_52_0.svg]

[25]:

define a pass through, y = x, callback
def callback(in_data, frame_count, time_info, status):
 global DSP_IO, zi_b1,zi_b2,zi_b3, x
 global Gain, band1, band2, band3
 DSP_IO.DSP_callback_tic()
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 #***
 # DSP operations here
 # Here we apply a linear filter to the input
 #x = in_data_nda.astype(float32)
 x = Gain.value*20000*x_loop.get_samples(frame_count)
 # DSP code here
 b_b1,a_b1 = ss.peaking(band1.value,100,Q=3.5,fs=48000)
 z1, zi_b1 = signal.lfilter(b_b1,a_b1,x,zi=zi_b1)
 b_b2,a_b2 = ss.peaking(band2.value,1000,Q=3.5,fs=48000)
 z2, zi_b2 = signal.lfilter(b_b2,a_b2,z1,zi=zi_b2)
 b_b3,a_b3 = ss.peaking(band3.value,8000,Q=3.5,fs=48000)
 y, zi_b3 = signal.lfilter(b_b3,a_b3,z2,zi=zi_b3)
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples(y)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 # Convert ndarray back to bytes
 #return (in_data_nda.tobytes(), pyaudio.paContinue)
 return y.tobytes(), pah.pyaudio.paContinue

fs, x_wav2 = ss.from_wav('audio_files/Music_Test.wav')
x_wav = (x_wav2[:,0] + x_wav2[:,1])/2
x_loop = pah.loop_audio(x_wav)
DSP_IO = pah.DSP_io_stream(callback,0,1,fs=44100,Tcapture=0)
DSP_IO.interactive_stream(0,1)
widgets.HBox([Gain,band1,band2,band3])

[26]:

Image("audio_files/three_band_widgets.png", width="55%")

[26]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_55_0.png]

[27]:

f_AD,Mag_AD = loadtxt('audio_files/ThreeBand_Peak_100_p20_1k_p10_8k_m10_fs_48k.csv',
 delimiter=',',skiprows=6,unpack=True)
semilogx(f_AD,Mag_AD+55)
semilogx(f,20*log10(abs(H_123)))
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
legend((r'AD2 Noise Measured',r'Design Theory'))
title(r'Three Band Equalizer: $f_{center} = [100,1000,800]$, $Q = 3.5$')
ylim([-20,20])
xlim([50,10000])
grid();

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_56_0.svg]

[]:

[1]:

fill namespace with numpy and matplotlib + static notebook plots
%pylab inline
fill namespace with numpy and matplotlib + and interactive plots
#%pylab notebook
#%pylab widget
#%matplotlib qt
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.digitalcom as dc
import sk_dsp_comm.rtlsdr_helper as sdrh
import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d
import ipywidgets as widgets
import imp # for module reloading
import scipy.signal as signal
from IPython.display import Audio, display
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

[2]:

pylab.rcParams['savefig.dpi'] = 100 # default 72
#pylab.rcParams['figure.figsize'] = (6.0, 4.0) # default (6,4)
#%config InlineBackend.figure_formats=['png'] # default for inline viewing
%config InlineBackend.figure_formats=['svg'] # SVG inline viewing
#%config InlineBackend.figure_formats=['pdf'] # render pdf figs for LaTeX
#Image('fname.png',width='80%')

RTLSDR Stream Class

Now included in the rtlsdr_helper is the RTLSDR_stream class. This class contains async methods for reading IQ data from the rtl_sdr, decimating, and playing back audio.

In this notebook only few examples are shown in order to resolve readthedocs rendering issues. The omitted live content is placed in markdown cells as code fences. In some cases screen shots of plots and GUI controls are provided. To experiment with live code the user can simply move the code in fences back into code cells.

The Python 3.7x asyncio capability is utilized in the software architecture. Being able to function inside the Jupyter event loop is the first hurtle:

[9]:

Image("300ppi/Jupyter_concurrent_tasks@300ppi.png", width="90%")

[9]:

[image: ../_images/nb_examples_rtlsdr_helper_streaming_sample_4_0.png]

The top level block diagram of the receiver is shown below:

[10]:

Image("300ppi/RTLSDR_Streaming_Block@300ppi.png", width="90%")

[10]:

[image: ../_images/nb_examples_rtlsdr_helper_streaming_sample_6_0.png]

Mono FM Receiver Example

You can use pyaudio_helper to find available audio devices

[3]:

sdrh.pah.available_devices()

[3]:

{0: {'name': 'Microsoft Sound Mapper - Input', 'inputs': 2, 'outputs': 0},
 1: {'name': 'Microphone (Realtek Audio)', 'inputs': 2, 'outputs': 0},
 2: {'name': 'Microsoft Sound Mapper - Output', 'inputs': 0, 'outputs': 2},
 3: {'name': 'Speakers / Headphones (Realtek ', 'inputs': 0, 'outputs': 6},
 4: {'name': 'Microphone (Realtek HD Audio Mic input)',
 'inputs': 2,
 'outputs': 0},
 5: {'name': 'Stereo Mix (Realtek HD Audio Stereo input)',
 'inputs': 2,
 'outputs': 0},
 6: {'name': 'Speakers 1 (Realtek HD Audio output with SST)',
 'inputs': 0,
 'outputs': 2},
 7: {'name': 'Speakers 2 (Realtek HD Audio output with SST)',
 'inputs': 0,
 'outputs': 6},
 8: {'name': 'PC Speaker (Realtek HD Audio output with SST)',
 'inputs': 2,
 'outputs': 0}}

[4]:

sdr_stream = sdrh.RTLSDR_stream(0,rtl_buffer_size=2**15,audio_out=3)

[5]:

sdr_stream.interactive_FM_Rx(88.7e6,40,3,2048,48000)

Sample Rate: 2400000.0
Center Frequency: 88700000
Gain: 40.2

[6]:

sdr_stream.show_logs()

[7]:

sdr_stream.clear_logs()

[8]:

sdr_stream.sdr.close()

[3]:

Image("300ppi/Interactive_FM_Rx@300ppi.png", width="90%")

[3]:

[image: ../_images/nb_examples_rtlsdr_helper_streaming_sample_15_0.png]

User-Defined Callbacks

This callback will be called after the initial decimation

[9]:

def callback(samples,fs,user_var):
 # Discriminator
 x = samples
 X=np.real(x) # X is the real part of the received signal
 Y=np.imag(x) # Y is the imaginary part of the received signal
 b=np.array([1, -1]) # filter coefficients for discrete derivative
 a=np.array([1, 0]) # filter coefficients for discrete derivative
 derY=signal.lfilter(b,a,Y) # derivative of Y,
 derX=signal.lfilter(b,a,X) # " X,
 z_bb=(X*derY-Y*derX)/(X**2+Y**2)
 return z_bb,user_var

[10]:

sdr_stream.run_user_stream(callback,10,5)

Using default stage 1 decimation filter
Using default stage 2 decimation filter
Using default stage 1 initial conditions
Using default stage 2 initial conditions
Starting SDR and Audio Event Loop

[12]:

sdr_stream.set_audio_gain_db(-20)

[16]:

sdr_stream.set_fc(88.7e6)

Center Frequency: 88700000

[17]:

sdr_stream.stop()

Probing in Time and Frequency

Time and frequency domin probing is possible as depicted in the figure below:

[4]:

Image("300ppi/Probe_Locations@300ppi.png", width="90%")

[4]:

[image: ../_images/nb_examples_rtlsdr_helper_streaming_sample_24_0.png]

Pulling frames from a stream

sdr_stream.run_user_stream(callback,10,5)

rf_frame = await sdr_stream.get_rf_frame()

Nfft = 2**10
print(len(rf_frame))
Px,f = psd(rf_frame,Nfft,sdr_stream.get_sample_rate()/1e6,sdr_stream.get_center_freq()/1e6);

stage1_frame = await sdr_stream.get_stage1_frame()

print(len(stage1_frame))
psd(stage1_frame,Nfft,2.4e6,99.9e6/10);

processed_stage1_frame = await sdr_stream.get_processed_stage1_frame()

Nfft = 2**10
print(len(processed_stage1_frame))
psd(processed_stage1_frame,Nfft,2.4e6/10,0);

stage2_frame = await sdr_stream.get_stage2_frame()

Nfft = 2**10
print(len(stage2_frame))
psd(stage2_frame,Nfft,2.4e6/50,0);

sdr_stream.stop()

Spectrum Plots

These plots are updated using the matplotlib interactive graphics widget: https://github.com/matplotlib/jupyter-matplotlib.

%pylab widget
sdr_stream.set_audio_out(3)

sdr_stream.run_user_stream(callback,10,5)

sdr_stream.run_plot_rf_stream(1024,2,w=15,h=6)

sdr_stream.set_fc(99.9e6)

sdr_stream.set_NFFT(2048)

sdr_stream.set_refresh_rate(4)

sdr_stream.toggle_invert()

sdr_stream.stop_rf_plot()

sdr_stream.run_plot_stage1_stream(1024,1,w=15,h=6)

sdr_stream.stop_stage1_plot()

sdr_stream.run_plot_processed_stage1_stream(1024,1,w=15,h=6)

sdr_stream.stop_processed_stage1_plot()

sdr_stream.run_plot_stage2_stream(1024,1,w=15,h=6)

sdr_stream.set_fc(99.9e6)

sdr_stream.set_refresh_rate(4)

sdr_stream.stop_stage2_plot()

sdr_stream.stop_all()

Using Widgets

import ipywidgets as widgets

[]:

import ipywidgets as widgets

Frequency Slider

freq_slider = widgets.FloatSlider(
 value=103.9,
 min=87.5,
 max=108,
 step=0.2,
 description=r'$f_c\;\mathrm{(MHz)}$',
 continuous_update=True,
 orientation='horizontal',
 readout_format='0.1f',
 layout=widgets.Layout(
 width='90%',
)
)
freq_slider.style.handle_color = 'lightblue'

def set_freq_MHz(fc):
 sdr_stream.set_fc(fc*1e6)

sdr_stream.run_user_stream(callback,10,5)

center_freq_widget = widgets.interactive(set_freq_MHz, fc=freq_slider)
display(center_freq_widget)

sdr_stream.run_plot_rf_stream(w=15,h=6)

sdr_stream.stop_all()

Audio Gain Slider

audio_gain_slider = widgets.FloatSlider(
 value=-3,
 min=-60,
 max=6,
 step=0.1,
 description=r'Gain (dB)',
 continuous_update=True,
 orientation='horizontal',
 readout_format='0.1f',
 layout=widgets.Layout(
 width='90%',
)
)
audio_gain_slider.style.handle_color = 'lightgreen'

def set_audio_gain_db(db_gain):
 gain = 10**(db_gain/20)
 sdr_stream.set_audio_gain(gain)

audio_gain_widget = widgets.interactive(set_audio_gain_db, db_gain=audio_gain_slider)

display(audio_gain_widget)
display(center_freq_widget)

sdr_stream.run_user_stream(callback,10,5)

sdr_stream.stop()

On/Off Toggle Buttons

def radio_on_off(selection):
 if(selection == 'On'):
 def my_callback(samples,fs,user_val):
 # Discriminator
 x = samples
 X=np.real(x) # X is the real part of the received signal
 Y=np.imag(x) # Y is the imaginary part of the received signal
 b=np.array([1, -1]) # filter coefficients for discrete derivative
 a=np.array([1, 0]) # filter coefficients for discrete derivative
 derY=signal.lfilter(b,a,Y) # derivative of Y,
 derX=signal.lfilter(b,a,X) # " X,
 z_bb=(X*derY-Y*derX)/(X**2+Y**2)
 return z_bb,user_val
 if(not sdr_stream.keep_streaming):
 sdr_stream.run_user_stream(my_callback,10,5)
 else:
 sdr_stream.stop()

on_off = widgets.ToggleButtons(
 options=['On', 'Off'],
 description = ' ',
 value = 'Off'
)
on_off.style.button_width = "400px"
on_off.style.description_width = "1px"

on_off_widget = widgets.interactive(radio_on_off,selection=on_off)

display(on_off_widget)
display(audio_gain_widget)
display(center_freq_widget)

Adjustable Stage 1 Filter

stage1_fc = widgets.FloatSlider(
 value=100,
 min=2,
 max=200,
 step=0.1,
 description=r'$f_{cS1} \;\mathrm{(KHz)}$',
 continuous_update=False,
 orientation='horizontal',
 readout_format='0.1f',
 layout=widgets.Layout(
 width='90%',
)
)
stage1_fc.style.handle_color = 'orange'

def stage1_fc_change(fc):
 b = fir_d.firwin_lpf(64,2*fc*1e3,2.4e6)
 stage1_ic = signal.lfilter_zi(b,1)
 sdr_stream.set_stage1_coeffs(b,zi=stage1_ic)

stage1_fc_widget = widgets.interactive(stage1_fc_change,fc=stage1_fc)

display(on_off_widget)
display(audio_gain_widget)
display(stage1_fc_widget)
display(center_freq_widget)

sdr_stream.run_plot_stage1_stream(1024,2,w=15,h=6)

sdr_stream.stop_stage1_plot()

Adjustable Stage 2 Filter

stage2_fc = widgets.FloatSlider(
 value=12,
 min=2,
 max=20,
 step=0.1,
 description=r'$f_{cS2} \;\mathrm{(KHz)}$',
 continuous_update=False,
 orientation='horizontal',
 readout_format='0.1f',
 layout=widgets.Layout(
 width='90%',
)
)
stage2_fc.style.handle_color = 'purple'

def stage2_fc_change(fc):
 bb = fir_d.firwin_lpf(64,fc*1e3,2.4e6/10)
 stage2_ic = signal.lfilter_zi(bb,1)
 sdr_stream.set_stage2_coeffs(bb,zi=stage2_ic)

stage2_fc_widget = widgets.interactive(stage2_fc_change,fc=stage2_fc)

display(on_off_widget)
display(audio_gain_widget)
display(stage1_fc_widget)
display(stage2_fc_widget)
display(center_freq_widget)

sdr_stream.run_plot_stage2_stream(1024,2,w=15,h=6)

sdr_stream.stop_stage2_plot()

Bypassing Audio

import asyncio

sdr_stream.set_rtl_buffer_size(16)

def no_audio_callback(samples,fs,user_var):
 frame_count = user_var
 user_var = user_var+1
 return array([frame_count]),user_var

global keep_collecting

async def handle_data_out():
 global keep_collecting
 keep_collecting = True
 while keep_collecting:
 data_out = await sdr_stream.get_data_out_async()
 print(data_out)
 sdr_stream.reset_data_out_queue()
 print('Done')

sdr_stream.run_user_stream(no_audio_callback,1,1,audio_sink=False,user_var=1)
task = asyncio.create_task(handle_data_out())

keep_collec