

Welcome to scikit-dsp-comm’s documentation!

Readme

[image: Logo]

scikit-dsp-comm

[image: pypi]
 [https://pypi.python.org/pypi/scikit-dsp-comm][image: Docs]
 [http://scikit-dsp-comm.readthedocs.io/en/latest/?badge=latest]
Background

The origin of this package comes from the writing the book Signals and Systems for Dummies, published by Wiley in 2013. The original module for this book is named ssd.py. In scikit-dsp-comm this module is renamed to sigsys.py to better reflect the fact that signal processing and communications theory is founded in signals and systems, a traditional subject in electrical engineering curricula.

Package High Level Overview

This package is a collection of functions and classes to support signal processing and communications theory teaching and research. The foundation for this package is scipy.signal. The code in particular currently runs under Python 2.7x and 3.6x.

We are striving for improved documentation, with examples. Minor bugs are being fixed. New features are planned, in particular a GPS_helper module and additions to the synchronization module. There is also a desire to improve the fec_conv to move develop rate 1/3 codes and the use of compiled code to improve performance

The real-time audio DSP capabilities of pyaudio_helper allow for two channel algorithm development with real-time user control enabled by the ipywidgets when running in the Jupyter notebook.

Finally, there is a strong desire to utilize the real-time DSP capabilities of pyaudio_helper to allow real-time streaming of complex baseband (IQ) signals from rtlsdr_helper through demodulation algorithms and out through the Pyaudio interface.

There are presently ten modules that make up scikit-dsp-comm:

	sigsys.py for basic signals and systems functions both continuous-time and discrete-time, including graphical display tools such as pole-zero plots, up-sampling and down-sampling.

	digitalcomm.py for digital modulation theory components, including asynchronous resampling and variable time delay functions, both useful in advanced modem testing.

	synchronization.py which contains phase-locked loop simulation functions and functions for carrier and phase synchronization of digital communications waveforms.

	fec_conv.py for the generation rate one-half convolutional codes and soft decision Viterbi algorithm decoding, including trellis and trellis-traceback display functions.

	fir_design_helper.py which for easy design of lowpass, highpass, bandpass, and bandstop filters using the Kaiser window and equal-ripple designs, also includes a list plotting function for easily comparing magnitude, phase, and group delay frequency responses.

	iir_design_helper.py which for easy design of lowpass, highpass, bandpass, and bandstop filters using scipy.signal Butterworth, Chebyshev I and II, and elliptical designs, including the use of the cascade of second-order sections (SOS) topology from scipy.signal, also includes a list plotting function for easily comparing of magnitude, phase, and group delay frequency responses.

	multirate.py that encapsulate digital filters into objects for filtering, interpolation by an integer factor, and decimation by an integer factor.

	coeff2header.py write C/C++ header files for FIR and IIR filters implemented in C/C++, using the cascade of second-order section representation for the IIR case. This last module find use in real-time signal processing on embedded systems, but can be used for simulation models in C/C++.

Presently the collection of modules contains about 125 functions and classes. The authors/maintainers are working to get more detailed documentation in place.

Extras

This package contains the helper modules rtlsdr_helper, and pyaudio_helper which require the packages pyrtlsdr [https://pypi.python.org/pypi/pyrtlsdr] and PyAudio [https://pypi.python.org/pypi/PyAudio]. To use the full functionality of these helpers, install the package from the scikit-dsp-comm folder as follows:

pip install -e .[helpers]

Installation is described in greater detail below.

	pyaudio_helper.py wraps a class around the code required in PyAudio (wraps the C++ library PortAudio) to set up a non-blocking audio input/output stream. The user only has to write the callback function to implement real-time DSP processing using any of the input/output devices available on the platform. This resulting object also contains a capture buffer for use in post processing and a timing markers for assessing the processing time utilized by the callback function. When developing apps in the Jupyter Notebook there is support for the IPywidgets along with threading.

	rtlsdr_helper.py interfaces with pyrtldsr to provide a simple captures means for complex baseband software defined radio (SDR) samples from the low-cost (~$20) RTL-SDR USB hardware dongle. The remaining functions in this module support the implementation of demodulators for FM modulation and examples of complete receivers for FM mono, FM stereo, and tools for FSK demodulation, including bit synchronization.

Documentation

Documentation is now housed on readthedocs which you can get to by clicking the docs badge near the top of this README. Example notebooks can be viewed on GitHub pages [https://mwickert.github.io/scikit-dsp-comm/]. In time more notebook postings will be extracted from Dr. Wickert’s Info Center [http://www.eas.uccs.edu/~mwickert/].

Getting Set-up on Your System

The best way to use this package is to clone this repository and then install it.

git clone https://github.com/mwickert/scikit-dsp-comm.git

There are package dependencies for some modules that you may want to avoid. Specifically these are whenever hardware interfacing is involved. Specific hardware and software configuration details are discussed in wiki pages [https://github.com/mwickert/SP-Comm-Tutorial-using-scikit-dsp-comm/wiki]. For Windows users pip install takes care of almost everything. I assume below you have Python on your path, so for example with Anaconda [https://www.anaconda.com/download/#macos], I suggest letting the installer set these paths up for you.

Editable Install with Dependencies

With the terminal in the root directory of the cloned repo perform an editable pip install using

pip install -e .[helpers]

Editable Install without Dependencies

To install without the PyAudio and RTL-SDR dependency, and hence not be able to use those modules,

pip install -e .

On Windows the binaries needed for pyaudio should install, but on other platforms you will have to do some more work (Conda Forge install pending at the close of Scipy 2017 sprints). All the capability of the package is available less pyaudio and the RTL-SDR radio with doing any special installations. See the wiki pages [https://github.com/mwickert/SP-Comm-Tutorial-using-scikit-dsp-comm/wiki] for more information.

Why an Editable Install?

The advantage of the editable pip install is that it is very easy to keep scikit-dsp-comm up to date. If you know that updates have been pushed to the master branch, you simply go to your local repo folder and

git pull origin master

This will update you local repo and automatically update the Python install without the need to run pip again. Note: If you have any Python kernels running, such as a Jupyter Notebook, you will need to restart the kernel to insure any module changes get reloaded.

Feature: Real-Time DSP with pyaudio_helper

A real-time DSP experience is possible right in the Jupyter notebook. Fall 1017 updates to pyaudio_helper make it possible to do two channel audio (stereo) and include interactivity using the ipywidgets. The callback function for a simple loop-through is given below. Note: Not all of the code is shown here, but is available here [https://mwickert.github.io/scikit-dsp-comm/]

import sk_dsp_comm.pyaudio_helper as pah

Check system audio devices available
pah.available_devices()

Index 0 device name = Built-in Microphone, inputs = 2, outputs = 0
Index 1 device name = Built-in Output, inputs = 0, outputs = 2
Index 2 device name = iMic USB audio system, inputs = 2, outputs = 2

You can think of the device index as a jack number on an audio patch panel.

Here each frame is processed using ndarrays and gain scaling is applied at the frame level. In general processing must be done sample-by-sample. Python globals can be used to maintain the state of a given DSP algorithm, e.g., an FIR or IIR filter.

Scale right and left channels independently
def callback(in_data, frame_count, time_info, status):
 DSP_IO.DSP_callback_tic()
 # convert byte data to ndarray
 in_data_nda = np.fromstring(in_data, dtype=np.int16)
 # separate left and right data
 x_left,x_right = DSP_IO.get_LR(in_data_nda.astype(float32))
 #***
 # DSP operations here

 y_left = volume_scale_left.value*x_left
 y_right = volume_scale_right.value*x_right

 #***
 # Pack left and right data together
 y = DSP_IO.pack_LR(y_left,y_right)
 # Typically more DSP code here
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples_stereo(y_left,y_right)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 # Convert ndarray back to bytes
 #return (in_data_nda.tobytes(), pyaudio.paContinue)
 return y.tobytes(), pah.pyaudio.paContinue

With the callback in place we are now ready to create a DSP_IO object and start streaming.

N_FRAME = 512
Create streaming object: use Built-in mic (idx = 0) and output (idx = 1)
DSP_IO = pah.DSP_io_stream(callback,in_idx=0,out_idx=1,fs=44100,
 frame_length = N_FRAME,Tcapture = 10)

use thread stream so widget can be used; Tsec = 0 <==> infinite stream
DSP_IO.interactive_stream(Tsec = 20, numChan = 2) # 20 Second stereo stream

display volume control widgets
widgets.HBox([volume_dB_left,volume_dB_right])

[image: Juypter notebook cell output]
[image: Mic input captured with speakers down to avoid feedback]

Examples

	SciPy 2017 Tutorial [https://github.com/mwickert/SP-Comm-Tutorial-using-scikit-dsp-comm]

	Jupyter Notebook Examples
	Introduction to Python and the Jupyter Notebook

	Rectangle and Triangle Pulses Defined

	Energy and Power Signals

	Fourier Series and Line Spectra Plotting

	Fourier Transforms

	Convolution

	Spectrum of PN Sequence (exact)

	Spectrum of PN Sequence (approx)

	Spectral Containment Bandwidth (text problem 2.55)

	Filter Analysis

	Filter Design Using the Helper Modules

	Design From Amplitude Response Requirements

	Linear Phase FIR Filter Design

	Traditional IIR Filter Design using the Bilinear Transform

	Multirate Signal Processing Using multirate_helper

	Introduction

	Real-Time Loop Through

	Widgets Examples

Modules

	coeff2header

	digitalcom

	fec_conv

	fir_design_helper

	iir_design_helper

	multirate_helper

	optfir

	pyaudio_helper

	rtlsdr_helper

	sigsys

	synchronization

Indices and tables

	Index

	Module Index

	Search Page

Jupyter Notebook Examples

Continuous-Time Signals and Systems using sigsys

	Introduction to Python and the Jupyter Notebook

	Rectangle and Triangle Pulses Defined
	More Signal Plotting
	Simple Cases:

	Custom Piecewise:

	Energy and Power Signals
	Power in the Sum of Two Sinusoids

	Fourier Series and Line Spectra Plotting
	Pulse Train

	Example: Pulse Train Line Spectra

	Example: Trapezoidal Pulse

	Fourier Transforms
	Example: Rectangular Pulse

	Example: Text Problem 2.31a Drill Down

	Example: Modulation Theorem

	Example: Representing a Bandlimited Signal

	Convolution

	Spectrum of PN Sequence (exact)

	Spectrum of PN Sequence (approx)
	Cross Correlation and Signal Delay

	Spectral Containment Bandwidth (text problem 2.55)
	Example:

	Filter Analysis
	Example: Discrete-Time Chebyshev Type I Bandpass Filter

	Example: Continuous-Time Bessel Bandpass Filter

	Second-Order Butterworth Lowpass Response
	Obtaining the Step Response via Simulation

FIR and IIR Filter Design

	Filter Design Using the Helper Modules

	Design From Amplitude Response Requirements

	Linear Phase FIR Filter Design
	Design Examples
	Example 1: Lowpass with \(f_s = 1\) Hz

	A Design Example Useful for Interpolation or Decimation

	Traditional IIR Filter Design using the Bilinear Transform
	IIR Design Based on the Bilinear Transformation
	Example: Lowpass Design Comparison
	Frequency Response Comparison

	A Half-Band Filter Design to Pass up to \(W/2\) when \(f_s = 8\) kHz

	Amplitude Response Bandpass Design

Multirate Processing

	Multirate Signal Processing Using multirate_helper
	The rate_change Class

	A Simple Example
	Time Domain

	Frequency Domain

	The multirate_FIR Class

	FIR Interpolator Design Example

	The multirate_IIR Class

	IIR Decimator Design Example

Real-Time DSP Using pyaudio_helper and ipywidgets

	Introduction
	Available Audio I/O Devices

	Real-Time Loop Through
	Real-Time Filtering

	Playback Only Using an Audio Loop

	Widgets Examples
	Stereo Gain Sliders

	Cross Panning

	Three Band Equalizer

In [1]:

from __future__ import division # use so 1/2 = 0.5, etc.
%pylab inline
import sk_dsp_comm.sigsys as ss
import scipy.signal as signal
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

In [2]:

pylab.rcParams['savefig.dpi'] = 100 # default 72
%config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Introduction to Python and the Jupyter Notebook

In [3]:

t = arange(-4,4,.01)
x = cos(2*pi*t)
plot(t,x)

grid()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_3_0.svg]

Rectangle and Triangle Pulses Defined

Before showing more examples, consider some familiar signal primitives
in your signals and systems background.

To see these defined in the text see in particular Appendix F.5 (p.727)
in the table of Fourier transform pairs.

Rectangle

\begin{align}
 \Pi\Big(\frac{t}{\tau}\Big) &= \begin{cases}
 1, & |t| \leq \tau/2 \\
 0, & \text{otherwise}
 \end{cases}
\end{align}
Triangle

\begin{align}
 \Lambda\Big(\frac{t}{\tau}\Big) &= \begin{cases}
 1-|t/\tau|, & |t|\leq \tau \\
 0, & \text{otherwise}
 \end{cases}
\end{align}
To more readily play with these function represent them numerically in
Python. The module ss.py has some waveform primitives to help.

In [4]:

t = arange(-5,5,.01)
x_rect = ss.rect(t-3,2)
x_tri = ss.tri(t+2,1.5)
subplot(211)
plot(t,x_rect)
grid()
ylabel(r'$\Pi((t-3)/2)$');
subplot(212)
plot(t,x_tri)
grid()
xlabel(r'Time (s)')
ylabel(r'$\Lambda((t+2)/1.5)$');
tight_layout()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_6_0.svg]

	Consider an interactive version of the above:

In [5]:

Make an interactive version of the above
from ipywidgets import interact, interactive

def pulses_plot(D1,D2,W1,W2):
 t = arange(-5,5,.01)
 x_rect = ss.rect(t-D1,W1)
 x_tri = ss.tri(t-D2,W2)
 subplot(211)
 plot(t,x_rect)
 grid()
 ylabel(r'$\Pi((t-3)/2)$');
 subplot(212)
 plot(t,x_tri)
 grid()
 xlabel(r'Time (s)')
 ylabel(r'$\Lambda((t+2)/1.5)$');
 tight_layout()

interactive_plot = interactive(pulses_plot,D1 = (-3,3,.5), D2 = (-3,3,.5), W1 = (0.5,2,.25), W2 = (0.5,2,.25));
output = interactive_plot.children[-1]
output.layout.height = '350px'
interactive_plot

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_8_0.svg]

More Signal Plotting

The basic pulse shapes (primitives) defined in the module ssd.py are
very useful for working Text 2.13a &d, but there are also times when you
need a custom piecewise function.

Simple Cases:

Consider plotting

	\(x_1(t) = \sin(2\pi\cdot 5t) \Pi((t-2)/2)\) for
\(0\leq t \leq 10\)

	\(x_2(t) = \sum_{n=-\infty}^\infty = \Pi((t-5n)/1)\) for
\(-10 \leq t \leq 10\)

In [6]:

t1 = arange(0,10+.01,.01) # arange stops one step size less than the upper limit
x1 = sin(2*pi*5*t1)* ss.rect(t1-2,2)
subplot(211)
plot(t1,x1)
xlabel(r'Time (s)')
ylabel(r'$x_1(t)$')
grid()
t2 = arange(-10,10,.01)
Tweak mod() to take on negative values
x2 = ss.rect(mod(t2+2.5,5)-2.5,1)
subplot(212)
plot(t2,x2)
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$')
grid()
tight_layout()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_10_0.svg]

Custom Piecewise:

A custom piecewise function is a direct and to the point way of getting
a more complex function plotted. Consider plotting:

\begin{align}
 x_3(t) = \begin{cases}
 1 + t^2, & 0\leq t \leq 3 \\
 \cos(2\pi\cdot5\cdot t) & 3 < t \leq 5 \\
 0, & \text{otherwise}
 \end{cases}
\end{align}
for \(-2\leq t \leq 6\).

In [7]:

def x3_func(t):
 """
 Create a piecewise function for plotting x3
 """
 x3 = zeros_like(t)
 for k,tk in enumerate(t):
 if tk >= 0 and tk <= 3:
 x3[k] = 1 + tk**2
 elif tk > 3 and tk <= 5:
 x3[k] = cos(2*pi*5*tk)
 return x3

In [8]:

t3 = arange(-2,6+.01,.01)
x3 = x3_func(t3)
plot(t3,x3)
xlabel(r'Time (s)')
ylabel(r'$x_3(t)$')
xlim([-2,6])
grid()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_13_0.svg]

In [9]:

26/2

Out[9]:

13.0

Energy and Power Signals

The general definitions are:

\begin{align}
 E &\overset{\Delta}{=} \lim_{T\rightarrow\infty} \int_{-T}^T |x(t)|^2\, dt = \int_{-\infty}^\infty |x(t)|^2\, dt \\
 P &\overset{\Delta}{=} \lim_{T\rightarrow\infty}\frac{1}{2T} \int_{-T}^T |x(t)|^2\, dt
\end{align}
For the case of a periodic signal, you can take the definition of
\(P\) above and reduce the calculation down to

\begin{align}
 P = \frac{1}{T} \int_{t_0}^{t_0+T} |x(t)|^2\, dt
\end{align}
where \(t_0\) can be any convenient value.

Consider the waveform of Text problem 2.14b

\begin{align}
 x_2(t) = \sum_{n=-\infty}^\infty \Lambda\Big(\frac{t-3n}{2}\Big)
\end{align}
You can create an approximation to the waveform over a finite number of
periods by doing a little programming:

In [10]:

def periodic_tri(t,tau,T,N):
 """
 Approximate x2(t) by running the sum index from -N to +N.
 The period is set by T and tau is the tri pulse width
 parameter (base width is 2*tau).

 Mark Wickert January 2015
 """
 x = zeros_like(t)
 for n in arange(-N,N+1):
 x += ss.tri(t-T*n,tau)
 return x

In [11]:

t = arange(-10,10,.001)
x = periodic_tri(t,2,6,10)
plot(t,x)
plot(t,abs(x)**2)
grid()
#xlim([-5,5])
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$ and $x_2^2(t)$');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_20_0.svg]

For the power calculation create a time array that runs over exactly one
period. Below is the case for the original problem statement.

In [12]:

T0 = 6
tp = arange(-T0/2,T0/2+.001,.001)
xp = periodic_tri(tp,2,T0,5)
plot(tp,xp)
plot(tp,abs(xp)**2)
legend((r'$x(t)$', r'$|x(t)|^2$'),loc='best',shadow=True)
grid();
xlim([-T0/2,T0/2])
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$ and $x_2^2(t)$');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_22_0.svg]

A simple numerical approximation to the integral

\begin{align}
 P = \frac{1}{T}\int_0^T |x_b(t)|^2\, dt
\end{align}
is shown below:

In [13]:

#Power calculation
Px2 = (1/T0)*sum(xp**2)*.001 # rectangular partitions for integral
print('Power estimate via numerical integration: %2.4f W' % Px2)

Power estimate via numerical integration: 0.2222 W

Power in the Sum of Two Sinusoids

The problem is what is the power in the signal

\begin{align}
 x(t) = A_1 \cos(\omega_1 t +\phi_1) + A_2 \cos(\omega_2 t + \phi_2),\ -\infty < t < \infty
\end{align}
Since we are not certain that \(x(t)\) is periodic, the power
calculation requires that we form

\begin{align}
 P_x = \lim_{T\rightarrow\infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2\, dt = \langle |x(t)|^2\rangle
\end{align}

	Rather that just jumping in and making a mess, consider first the
expansion of \(|x(t)|^2 = x^2(t)\):

\begin{align}
x^2(t) &= \frac{A_1^2}{2}\big[1+\cos(2\omega_1 t + \phi_1)\big] + \frac{A_2^2}{2}\big[1+\cos(2\omega_2 t + \phi_2)\big] \\
&\quad + 2\frac{A_1 A_2}{2}\Big\{\cos[(\omega_1 + \omega_2)t + (\phi_1+\phi_2)\big] + \cos[(\omega_1 - \omega_2)t + (\phi_1-\phi_2)\big]\Big\}
\end{align}

	The time average operator is linear, so we consider
\(\langle\ \ \rangle\) operating on each term of the above
independently

	For \(\omega_1 \neq \omega_2\), the first two terms yield
\(A_1^2/2\) and \(A_2^2/2\) respectively

	The last term requires some thinking, but as long as
\(\omega_1 \neq \omega_2\) the times average of
\(\cos[(\omega_1 + \omega_2)t + (\phi_1+\phi_2)]\) and
\(\cos[(\omega_1 - \omega_2)t + (\phi_1-\phi_2)\)], the two terms
respectively are each zero!

	Finally,

\begin{align}
P_x = \frac{A_1^2}{2} + \frac{A_2^2}{2}
\end{align}

	When the frequencies are equal, then you can combine the terms using
trig identities (recall the phasor addition formula from ECE 2610

\begin{align}
x(t) = A\cos(\omega t + \phi)
\end{align}
where \(\omega = \omega_1 = \omega_2\) and

\begin{align}
Ae^{j\phi} = A_1e^{j\phi_1} + A_2 e^{j\phi_2}
\end{align}

In [14]:

t = arange(-10,10,.001)
x1 = 4*cos(2*pi*10*t)
x2 = 3*cos(2*pi*3.45*t+pi/9)
plot(t,x1)
plot(t,x2)
plot(t,x1+x2)
grid()
xlabel(r'Time (s)')
ylabel(r'Amplitude')
legend((r'$x_1(t)$', r'$x_2(t)$', r'$x_1(t)+x_2(t)$'),loc='best',shadow=True)
xlim([-.1,.1]);

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_27_0.svg]

In [15]:

print('Power calculations: %3.2f, %3.2f, %3.2f' \
 % (var(x1),var(x2),var(x1+x2)))

Power calculations: 8.00, 4.50, 12.50

In [16]:

print('Theory: %3.2f, %3.2f, %3.2f' \
 % (4**2/2,3**2/2,4**2/2+3**2/2))

Theory: 8.00, 4.50, 12.50

Fourier Series and Line Spectra Plotting

Being able to easily plot the line spectra of periodic signals will
hopefully enhance your understanding. The module ss.py contains the
function ss.line_spectra() for this purpose. The function assumes
that the Fourier coefficients, \(X_n\) are available for a real
signal \(x(t)\). The function plots line spectra as: * The
two-sided magnitude spectra * The two-sided magnitude spectra in dB
with an adjustable floor level in dB * The two-sided phase spectra in
radians * The one-sided line spectra corresponding to the three cases
listed immediately above Examples are given below for the case of a
simple pulse train and then for a trapezoidal pulse train. IN the case
of the trapezoidal pulse train the underlying Fourier coefficients are
obtained numerically using the FFT as described in the course notes.

A fundamental requirement in using ss.line_spectra() is to beable to
supply the coefficients starting with the DC term coefficient
\(X_0\) and moving up to the \(N\)th harmonic. Before plotting
the pulse train line spectra I first describe a helper function for
visualizing the pulse train waveform.

Pulse Train

In [17]:

def pulse_train(Np,fs,tau,t0):
 """
 Generate a discrete-time approximation to a continuous-time
 pulse train signal. Amplitude values are [0,1]. Scale and offset
 later if needed.

 Inputs

 Np = number of periods to generate
 fs = samples per period
 tau = duty cycle
 t0 = pulse delay time relative to first rising edge at t = 0

 Return

 t = time axis array
 x = waveform

 Mark Wickert, January 2015
 """
 t = arange(0,Np*fs+1,1)/fs #time is normalized to make period T0 = 1.0
 x = zeros_like(t)
 # Using a brute force approach, just fill x with the sample values
 for k,tk in enumerate(t):
 if mod(tk-t0,1) <= tau and mod(tk-t0,1) >= 0:
 x[k] = 1
 return t,x

In [18]:

tau = 1/8; fs = 8*16; t0 = 0 # note t0 = tau/2
subplot(211)
t,x = pulse_train(4,fs,tau,t0)
plot(t,x) # Just a plot of xa(t)
ylim([-.1,1.1])
grid()
ylabel(r'$x_a(t)$')
title(r'Pulse Train Signal: (top) $x_a(t)$, (bot) $x_b(t) = 1-x_a(t)$');
subplot(212)
t,x = pulse_train(4,fs,tau,t0)
plot(t,1-x) # Note here y(t) = 1 - x(t), a special case of
ylim([-.1,1.1]) # y(t) = A + B*x(t) in the notes
grid()
xlabel(r'Time (t/T_0)')
ylabel(r'$x_b(t)$');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_34_0.svg]

Example: Pulse Train Line Spectra

For the case of pulse train having the initial pulse starting at
\(t=0\), i.e.,

\begin{align}
 x(t) = \sum_{k=-\infty}^\infty A\cdot \Pi\left(\frac{t-\tau/2-kT_0}{\tau}\right),
\end{align}
the Fourier coefficient are given by

\begin{align}
 X_n = A\cdot\frac{\tau}{T_0}\cdot\text{sinc}(nf_0\tau)\cdot\exp(-j2\pi n f_0t_0)
\end{align}
where \(f_0 = 1/T_0\) is the fundamental frequency and here
\(t_0 = \tau/2\).

Line spectra plotting is shown below for this case. If the pulse train
should be shifted in time to some other orientation, then the phase plot
will change, as the included \(\exp(j2\pi n f_0 t_0)\) term will be
different.

Note: The pulse train function define above is slightly different
from the pulse train defined in the book and shown in mathematical form
as \(x(t)\) just above in this cell. The function pulse_train()
has the first pulse starting exactly at \(t=0\). To move the pule
train right or left on the time axis, you can use the function parameter
t0.

In [19]:

n = arange(0,25+1) # Get 0 through 25 harmonics
tau = 0.125; f0 = 1; A = 1;
Xn = A*tau*f0*sinc(n*f0*tau)*exp(-1j*2*pi*n*f0*tau/2)
Xn = -Xn # Convert the coefficients from xa(t) t0 xb(t)
Xn[0] += 1
figure(figsize=(6,2))
f = n # Assume a fundamental frequency of 1 Hz so f = n
ss.line_spectra(f,Xn,mode='mag',sides=2,fsize=(6,2))
xlim([-25,25]);
#ylim([-50,10])
figure(figsize=(6,2))
ss.line_spectra(f,Xn,mode='phase',fsize=(6,2))
xlim([-25,25]);

<Figure size 432x144 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_37_1.svg]

<Figure size 432x144 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_37_3.svg]

Example: Trapezoidal Pulse

Consider the line spectra of a finite rise and fall time pulse train is
of practical interest. The function trap_pulse() allows you first
visualize one period of the trapezoidal pulse train, and then use this
waveform in obtaining numerically the Fourier coefficients of this
signal. PLotting the corresponding line spectra follows.

A point to be main is that by slowing down the edges (rise time/fall
time) of the pulse train the amplitude of the harmonics falls off more
rapidly. When considering the clock speed in todays PCs this can be a
good thing as harmonic emission is an issue.

In [20]:

def trap_pulse(N,tau,tr):
 """
 xp = trap_pulse(N,tau,tr)

 Mark Wickert, January 2015
 """
 n = arange(0,N)
 t = n/N
 xp = zeros(len(t))
 # Assume tr and tf are equal
 T1 = tau + tr
 # Create one period of the trapezoidal pulse waveform
 for k in n:
 if t[k] <= tr:
 xp[k] = t[k]/tr
 elif (t[k] > tr and t[k] <= tau):
 xp[k] = 1
 elif (t[k] > tau and t[k] < T1):
 xp[k] = -t[k]/tr + 1 + tau/tr;
 else:
 xp[k] = 0
 return xp, t

Let \(\tau = 1/8\) and \(t_r = 1/20\):

In [21]:

tau = 1/8, tr = 1/20
N = 1024
xp,t = trap_pulse(N,1/8,1/20)
Xp = fft.fft(xp)
figure(figsize=(6,2))
plot(t,xp)
grid()
title(r'Spectra of Finite Risetime Pulse Train: $\tau = 1/8$ $t_r = 1/20$')
ylabel(r'$x(t)$')
xlabel('Time (s)')
f = arange(0,N/2)
ss.line_spectra(f[0:25],Xp[0:25]/N,'magdB',floor_dB=-80,fsize=(6,2))
ylabel(r'$|X_n| = |X(f_n)|$ (dB)');
#% tau = 1/8, tr = 1/10
xp,t = trap_pulse(N,1/8,1/10)
Xp = fft.fft(xp)
figure(figsize=(6,2))
plot(t,xp)
grid()
title(r'Spectra of Finite Risetime Pulse Train: $\tau = 1/8$ $t_r = 1/10$')
ylabel(r'$x(t)$')
xlabel('Time (s)')
ss.line_spectra(f[0:25],Xp[0:25]/N,'magdB',floor_dB=-80,fsize=(6,2))
ylabel(r'$|X_n| = |X(f_n)|$ (dB)');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_42_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_42_1.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_42_2.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_42_3.svg]

With the edge speed slowed down it is clear that the harmonics drop off
faster.

Fourier Transforms

The Fourier transfrom definition is:

\begin{align}
 X(f) &= \int_{-\infty}^\infty x(t)\ e^{-j2\pi ft}\, dt \\
 x(t) &= \int_{-\infty}^\infty X(f)\, e^{j2\pi ft}\, df
\end{align}
A numerical approximation to the Fourier transform is possible using the
FFT, or more conveniently using the function freqz() from the
package scipy.signal. A helper function to abstract some of the
digital signal processing details is f, X = FT_approx(x,dt,Nfft).
The function is now part of sigsys.py with name change to
ft_approx():

In [22]:

def FT_approx(x,t,Nfft):
 '''
 Approximate the Fourier transform of a finite duration
 signal using scipy.signal.freqz()

 Inputs

 x = input signal array
 t = time array used to create x(t)
 Nfft = the number of frdquency domain points used to
 approximate X(f) on the interval [fs/2,fs/2], where
 fs = 1/Dt. Dt being the time spacing in array t

 Return

 f = frequency axis array in Hz
 X = the Fourier transform approximation (complex)

 Mark Wickert, January 2015
 '''
 fs = 1/(t[1] - t[0])
 t0 = (t[-1]+t[0])/2 # time delay at center
 N0 = len(t)/2 # FFT center in samples
 f = arange(-1/2,1/2,1/Nfft)
 w, X = signal.freqz(x,1,2*pi*f)
 X /= fs # account for dt = 1/fs in integral
 X *= exp(-1j*2*pi*f*fs*t0)# time interval correction
 X *= exp(1j*2*pi*f*N0)# FFT time interval is [0,Nfft-1]
 F = f*fs
 return F, X

Example: Rectangular Pulse

As as simple starting point example, consider \(x(t) = \Pi(t\tau)\).
The well known result for the Fourier transfrom (FT) is:

\begin{align}
 X(f) = \mathcal{F}\left\{\Pi\left(\frac{t}{\tau}\right)\right\} = \tau\,\text{sinc}(f\tau)
\end{align}
We now use the above defined FT_approx() to obtain a numerical
approximation to the FT of the rectangular pulse.

Tips: * Make sure the signal is well contained on the time interval
used to generate \(x(t)\) * Make sure the sampling rate, one over
the sample spacing, is adequate to represent the signal spectrum * From
sampling theory, the reange of frequencies represented by the spectrum
estimate will be \(f_s/2 \leq f < f_s/2\)

In [23]:

fs = 100 # sampling rate in Hz
tau = 1
t = arange(-5,5,1/fs)
x0 = ss.rect(t-.5,tau)
figure(figsize=(6,5))
subplot(311)
plot(t,x0)
grid()
ylim([-0.1,1.1])
xlim([-2,2])
title(r'Exact Waveform')
xlabel(r'Time (s)')
ylabel(r'$x_0(t)$');

FT Exact Plot
fe = arange(-10,10,.01)
X0e = tau*sinc(fe*tau)
subplot(312)
plot(fe,abs(X0e))
#plot(f,angle(X0))
grid()
xlim([-10,10])
title(r'Exact Spectrum Magnitude')
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_0e(f)|$');

FT Approximation Plot
f,X0 = ss.ft_approx(x0,t,4096)
subplot(313)
plot(f,abs(X0))
#plot(f,angle(X0))
grid()
xlim([-10,10])
title(r'Approximation Spectrum Magnitude')
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_0(f)|$');
tight_layout()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_49_0.svg]

Example: Text Problem 2.31a Drill Down

In this problem you are given

\begin{align}
 x_1(t) = \Pi\left(\frac{t+1/2}{1}\right) - \Pi\left(\frac{t-1/2}{1}\right)
\end{align}
The Fourier transfrom of this signal can be found using linearity and
the time delay theorems.

\begin{align}
 X_1(f) &= \mathcal{F}\left\{\Pi\left(\frac{t+1/2}{1}\right) - \Pi\left(\frac{t-1/2}{1}\right)\right\} \\
 &= \text{sinc}(f)\cdot\left[e^{j2\pi f\cdot 1/2} - e^{-j2\pi f\cdot 1/2}\right]\times\frac{2j}{2j} \\
 &= 2j\ \text{sinc}(f)\cdot\sin(\pi f)
\end{align}

In [24]:

fs = 100
t = arange(-5,5,1/fs)
x1 = ss.rect(t+1/2,1)-ss.rect(t-1/2,1)
subplot(211)
plot(t,x1)
grid()
ylim([-1.1,1.1])
xlim([-2,2])
xlabel(r'Time (s)')
ylabel(r'$x_1(t)$');
fe = arange(-10,10,.01)
X1e = 2*1j*sinc(fe)*sin(pi*fe)
f,X1 = ss.ft_approx(x1,t,4096)
subplot(212)
plot(f,abs(X1))
plot(fe,abs(X1e))
#plot(f,angle(X1))
legend((r'Num Approx',r'Exact'),loc='best')
grid()
xlim([-10,10])
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_1(f)|$');
tight_layout()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_52_0.svg]

	Notice the numerical approximation and exact spectral plots overlay
one another

Example: Modulation Theorem

Consider the modulation theorem, which is extremely important to
communications theory:

\begin{align}
 y(t) &= x(t)\cdot\cos(2\pi f_0 t) \\
 Y(f) &= \frac{1}{2}\left[X(f-f_0) + X(f+f_0)\right]
\end{align}
Here we will use a triangle pulse for \(x(t)\):

In [25]:

fs = 100 # sampling rate in Hz
tau = 1
t = arange(-5,5,1/fs)
x3 = ss.tri(t,tau)
y = x3*cos(2*pi*10*t)
subplot(211)
plot(t,x3)
plot(t,y)
grid()
ylim([-1.1,1.1])
xlim([-2,2])
legend((r'$x_3(t)$', r'$y(t)$'),loc='lower right',shadow=True)
title(r'Time Domain: $x_3(t)$ and $y(t)=x_3(t)\cos(2\pi\cdot 5\cdot t)$')
xlabel(r'Time (s)')
ylabel(r'$y(t)$');
f,Y = ss.ft_approx(y,t,4096)
subplot(212)
plot(f,abs(Y))
#plot(f,angle(X0))
grid()
title(r'Frequency Domain: $Y(f)$')
xlim([-15,15])
xlabel(r'Frequency (Hz)')
ylabel(r'$|Y(f)|$');
tight_layout()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_56_0.svg]

Example: Representing a Bandlimited Signal

We know that in theory a bandlimited signal can only be generated from a
signal having infinite duration. Specifically, a signal with rectangular
spectrum has Fourier transfrom pair:

\begin{align}
 x(t) = 2W\text{sinc}(2Wt) \overset{\mathcal{F}}{\Leftrightarrow} \Pi\left(\frac{f}{2W}\right) = X(f)
\end{align}
In a simulation we expect to have troubles modeling the finite duration
aspects of the signal.

In [26]:

fs = 100 # sampling rate in Hz
W = 5
t = arange(-5,5,1/fs)
x4 = 2*W*sinc(2*W*t)
figure(figsize=(6,2))
plot(t,x4)
grid()
#ylim([-1.1,1.1])
xlim([-2,2])
title(r'Time Domain: $x_4(t),\ W = 5$ Hz')
xlabel(r'Time (s)')
ylabel(r'$x_4(t)$');
f,X4 = ss.ft_approx(x4,t,4096)
figure(figsize=(6,2))
plot(f,abs(X4))
grid()
title(r'Frequency Domain: $X_4(f)$')
xlim([-10,10])
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_4(f)|$');
figure(figsize=(6,2))
plot(f,20*log10(abs(X4)))
grid()
title(r'Frequency Domain: $X_4(f)$ in dB')
ylim([-50,5])
xlim([-10,10])
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_4(f)|$ (dB)');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_59_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_59_1.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_59_2.svg]

Note: The dB version (last plot) reveals that the first sidelobes of
the spectrum are only down ~21dB. Increasing the length of the time
window will not help. The spectral side lobes will become more tightly
packed, but the first sidelobe will still be down only 21dB. With other
pulse shapes in the time domain, i.e., note simply a truncted
\(\text{sinc}()\) function reduced sidelobes can be obtained.

Convolution

	The convolution of two signals \(x_1(t)\) and \(x_2(t)\) is
defined as

\begin{align}
x(t) &= x_1(t)\ast x_2(t) = \int_{-\infty}^\infty x_1(\lambda)x_2(t-\lambda)\, d\lambda \\
&= x_2(t)\ast x_1(t) = \int_{-\infty}^\infty x_2(\lambda)x_1(t-\lambda)\, d\lambda
\end{align}

	A special convolution case is \(\delta(t-t_0)\)

\begin{align}
 \delta(t-t_0)\ast x(t) &= \int_{-\infty}^\infty \delta(\lambda-t_0)x(t-\lambda)\, d\lambda \\
 &= x(t-\lambda)\big|_{\lambda=t_0} = x(t-t_0)
\end{align}
You can experiment with the convolution integral numerically using
ssd.conv_integral() found in the module ssd.py.

In [27]:

t = arange(-2,2.001,.001)
p1 = ss.rect(t,1)
p2 = ss.rect(t,3)
y,ty = ss.conv_integral(p1,t,p2,t)
plot(ty,y)
ylim([-.01,1.01])
grid()
xlabel(r'Time (s)')
ylabel(r'$y(t)$');

Output support: (-4.00, +4.00)

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_63_1.svg]

For convolutions involving semi-infinite signals, such as \(u(t)\),
you can tell ssd.conv_integral() about this via the optional extent
argument. See the function help using

ss.conv_integral?

In [28]:

Consider a pulse convolved with an exponential ('r' type extent)
tx = arange(-1,8,.01)
x = ss.rect(tx-2,4) # pulse starts at t = 0
h = 4*exp(-4*tx)*ss.step(tx)
y,ty = ss.conv_integral(x,tx,h,tx,extent=('f','r')) # note extents set
plot(ty,y) # expect a pulse charge and discharge waveform
grid()
title(r'$\Pi((t-2)/4)\ast 4 e^{-4t} u(t)$')
xlabel(r'Time (s)')
ylabel(r'$y(t)$');

Output support: (-2.00, +6.99)

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_65_1.svg]

Spectrum of PN Sequence (exact)

The cell below is a copy of the earlier pulse train line spectra
example. Use this as a template to create the solution to the PN code
problem of HW 3.

In [29]:

n = arange(0,25+1) # Get 0 through 25 harmonics
tau = 0.125; f0 = 1; A = 1;
Xn = A*tau*f0*sinc(n*f0*tau)*exp(-1j*2*pi*n*f0*tau/2)
Xn = -Xn # Convert the coefficients from xa(t) t0 xb(t)
Xn[0] += 1
figure(figsize=(6,2))
f = n # Assume a fundamental frequency of 1 Hz so f = n
ss.line_spectra(f,Xn,mode='mag',sides=2,fsize=(6,2))
xlim([-25,25]);
#ylim([-50,10])
figure(figsize=(6,2))
ss.line_spectra(f,Xn,mode='phase',fsize=(6,2))
xlim([-25,25]);

<Figure size 432x144 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_67_1.svg]

<Figure size 432x144 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_67_3.svg]

Spectrum of PN Sequence (approx)

The code below approximates the PSD of the PN code using a numerical
approximation to the Fourier coefficients, \(X_n\). This development
may be useful for the lab, as you can esily change the waveform level
without having to rework the theory.

The approach taken here to create one period of the PN waveform at 10
samples per bit. The line containing the function ss.upsample()
converts the bit sequence into a waveform by upsampling and filtering
with a rectangular pulse shape (ones(10)). The function
ss.fs_coeff() numerically calculates the \(X_n\)‘s. To plot the
PSD from the Fourier coefficients we use

\[\begin{align}\begin{aligned} S_x(f) = \sum_{n=-\infty}^\infty |X_n|^2 \delta(f-nf_0)\\where :math:`f_0` in this case is :math:`1/(MT_0)` with :math:`T_0`\end{aligned}\end{align} \]

beging the bit period and \(M\) the code period in bits.

In [30]:

x_PN4 = ss.m_seq(4)
x = signal.lfilter(ones(10),1,ss.upsample(x_PN4,10))
t = arange(0,len(x))/10
figure(figsize=(6,2))
plot(t,x);
title(r'Time Domain and PSD of $M=15$ PN Code with $T = 1$')
xlabel(r'Time (s)')
ylabel(r'x(t)')
axis([0,15,-0.1,1.1]);
grid()
10 samples/bit so 150 samples/period
harmonics spaced by 1/(15*T) = 1/15
Xk,fk = ss.fs_coeff(x,45,1/15)
ss.line_spectra(fk,Xk,'magdB',lwidth=2.0,floor_dB=-50,fsize=(6,2))
xlim([-3,3])
ylabel(r'$|X_n| = |X(f_n)|$ (dB)');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_69_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_69_1.svg]

In [31]:

Line spacing
1/15

Out[31]:

0.06666666666666667

In [32]:

import sk_dsp_comm.digitalcom as dc
y_PN5_bits = ss.PN_gen(10000,5)
Convert to waveform level shifted to +/-1 amplitude
y = 2*signal.lfilter(ones(10),1,ss.upsample(y_PN5_bits,10))-1
Find the time averaged autocorrelation function normalized
to have a peak amplitude of 1
Ry,tau = dc.xcorr(y,y,400)
We know Ry is real so strip small imag parts from FFT-based calc
Ry = Ry.real

In [33]:

fs = 10
t = arange(len(y))/fs
plot(t[:500],y[:500])
title(r'PN Waveform for 5 Stages (Period $2^5 -1 = 31$ bits)')
ylabel(r'Amplitude')
xlabel(r'Bits (10 samples/bit)')
grid();

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_72_0.svg]

In [34]:

tau_s = tau/10
figure(figsize=(6,2))
plot(tau_s,Ry)
title(r'Autocorrelation and PSD Estimates for $M=31$ with $T = 1$')
xlabel(r'Autocorrelation Lag τ (s)')
ylabel(r'$R_y(\tau)$')
grid();
figure(figsize=(6,2))
psd(y,2**12,10)
xlabel(r'Frequency (Hz)')
ylabel(r'$S_y(f)$ (dB)')
#xlim([0,.002]);
ylim([-30,20]);

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_73_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_73_1.svg]

In Lab 2 of ECE 4670 a C/C++ version of a PN generator is implemented to
run the ARM mbed LPC 1768 microcontroller
(https://www.sparkfun.com/products/9564). At the heart of this code is:

// Globals defined as unsigned int
tap1 -= 1;
tap2 -= 1;
mask1 = 0x1 << (tap1);
mask2 = 0x1 << (tap2);
bit = 0x0;
sync = 0x0;

void gen_PN() {
 my_pin5 = bit;
 my_pin6 = synch_bit;
 led2 = bit;
 led3 = synch_bit;
 if (clk_state == 0x1)
 {
 // Advance m-sequence generator by one bit
 // XOR tap1 and tap2 SR values and feedback to input
 fb = ((sr & mask1)>> tap1) ^ ((sr & mask2) >> tap2);
 sr = (sr << 1) + fb;
 bit = sr & 0x1;
 // Use random number generator in place of m-sequence bits
 if (DIP_sw4)
 {
 bit = rand_int() & 0x1;
 }
 clk_state = 0x0;
 // See if all 1's condition exists in SR
 if ((sr & synch) == synch) {
 synch_bit = 0x1;
 }
 else
 {
 synch_bit = 0x0;
 }
 }
 else
 {
 if (DIP_sw1) bit = !bit;
 clk_state = 0x1;
 }
}

The data type is unsigned int, which on the mbed is uint16_t, an
unsigned 16-bit integer. A single unsigned integer is used as a 16-bit
shift register with the LSB, furthest bit to the right, used to
represent the first register stage. The shift register is advanced using
a left shift << bitwise operation. We can code this Python almost
directly, as shown below.

In [35]:

class bitwise_PN(object):
 """
 Implement a PN generator using bitwise manipulation for
 the shift register. The LSB holds b0 and bits are shifted left.
 +----+----+----+----+----+----+----+
 sr = |bM-1| .. |bM-k| .. | b2 | b1 | b0 |
 +----+----+----+----+----+----+----+
 | |
 Feedback:(tap1-1) (tap2-1) Shift left using <<

 Mark Wickert February 2017
 """
 def __init__(self,tap1,tap2,Nstage,sr_initialize):
 """
 Initialize the PN generator object
 """
 self.tap1 = tap1 - 1
 self.tap2 = tap2 - 1
 self.mask1 = 0x1 << (tap1 - 1) # to select bit of interest
 self.mask2 = 0x1 << (tap2 - 1) # to select bit of interest
 self.Nstage = Nstage
 self.period = 2**Nstage - 1
 self.sr = sr_initialize
 self.bit = 0
 self.sync_bit = 0

 def clock_PN(self):
 '''
 Method to advance m-sequence generator by one bit
 XOR tap1 and tap2 SR values and feedback to input
 '''
 fb = ((self.sr & self.mask1)>> self.tap1) ^ \
 ((self.sr & self.mask2) >> self.tap2)
 self.sr = (self.sr << 1) + fb
 self.sr = self.sr & self.period # set MSBs > Nstage to 0
 self.bit = self.sr & 0x1 # output LSB from SR
 # See if all 1's condition exits in SR, if so output a synch pulse
 if ((self.sr & self.period) == self.period):
 self.sync_bit = 0x1
 else:
 self.sync_bit = 0x0
 print('output = %d, sr contents = %s, sync bit = %d' \
 % (self.bit, binary(self.sr, self.Nstage), self.sync_bit))

In [36]:

A simple binary format display function which shows
leading zeros to a fixed bit width
def binary(num, length=8):
 return format(num, '#0{}b'.format(length + 2))

In [37]:

PN1 = bitwise_PN(10,7,10,0x1)

In [38]:

PN1.clock_PN()

output = 0, sr contents = 0b0000000010, sync bit = 0

In [39]:

sr initial condition
sr = 0b1

In [40]:

Nout = 20
x_out = zeros(Nout)
s_out = zeros(Nout)
PN1 = bitwise_PN(3,2,3,0x1)
for k in range(Nout):
 PN1.clock_PN()
 x_out[k] = PN1.bit
 s_out[k] = PN1.sync_bit

output = 0, sr contents = 0b010, sync bit = 0
output = 1, sr contents = 0b101, sync bit = 0
output = 1, sr contents = 0b011, sync bit = 0
output = 1, sr contents = 0b111, sync bit = 1
output = 0, sr contents = 0b110, sync bit = 0
output = 0, sr contents = 0b100, sync bit = 0
output = 1, sr contents = 0b001, sync bit = 0
output = 0, sr contents = 0b010, sync bit = 0
output = 1, sr contents = 0b101, sync bit = 0
output = 1, sr contents = 0b011, sync bit = 0
output = 1, sr contents = 0b111, sync bit = 1
output = 0, sr contents = 0b110, sync bit = 0
output = 0, sr contents = 0b100, sync bit = 0
output = 1, sr contents = 0b001, sync bit = 0
output = 0, sr contents = 0b010, sync bit = 0
output = 1, sr contents = 0b101, sync bit = 0
output = 1, sr contents = 0b011, sync bit = 0
output = 1, sr contents = 0b111, sync bit = 1
output = 0, sr contents = 0b110, sync bit = 0
output = 0, sr contents = 0b100, sync bit = 0

In [41]:

stem(x_out)
stem(0.2*s_out,markerfmt = 'ro')
ylim([0,1.1])

Out[41]:

(0, 1.1)

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_81_1.svg]

Cross Correlation and Signal Delay

The idea of the autocorrelation function can be extended to the cross
correlation, that is the correlation or likeness between two signals,
say \(x(t)\) and \(y(t)\). Define

\begin{align}
 R_{xy}(\tau) = \langle x(t)y(t+\tau)\rangle = \lim_{T\rightarrow\infty} \frac{1}{2T}\int_{-T}^T x(t)y(t+\tau)\, dt
\end{align}
Consider a simulation example using dc.xcorr(x,t,lags):

In [42]:

import sk_dsp_comm.digitalcom as dc
x_PN4_bits = ss.PN_gen(10000,6)
Convert to waveform level shifted to +/-1 amplitude
x_s = 2*signal.lfilter(ones(10),1,ss.upsample(x_PN4_bits,10))-1
Form a delayed version of x_S
T_D = 35 # 35 sample delay
y_s = signal.lfilter(concatenate((zeros(T_D),array([1]))),1,x_s)
figure(figsize=(6,2))
plot(x_s[:200])
plot(y_s[:200])
ylim([-1.1,1.1])
title(r'Delayed and Undelayed Signals for $T_D = 35$ Samples')
xlabel(r'Samples (10/PN bit)')
ylabel(r'$x_s(t)$ and $y_s(t)$')
grid();
Find the time averaged autocorrelation function normalized
to have a peak amplitude of 1
Ryx,tau = dc.xcorr(y_s,x_s,200) #note order change
We know Ryx is real
Ryx = Ryx.real
tau_s = tau/10
figure(figsize=(6,2))
plot(tau_s,Ryx)
title(r'Cross Correlation for $M=4$ with $T = 1$ and Delay 35 Samples')
xlabel(r'Autocorrelation Lag τ (s)')
ylabel(r'$R_{yx}(\tau)$')
grid();

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_84_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_84_1.svg]

Spectral Containment Bandwidth (text problem 2.55)

In text problem 2.55 you are asked to find the 90% energy contain
bandwidth of a signal \(x_i(t)\). Specifically you are to find the
lowpass or one-sided bandwidth of a baseband signal such that 90% of the
total signal energy is contained in the bandwidth, \(B_{90}\). You
obtain \(B_{90}\) by solving the following equation

\begin{align}
 0.9 = \frac{0.9 E_\text{total}}{E_\text{total}} = \frac{\int_{-B_{90}}^{B_{90}} G(f) df}{\int_{-\infty}^\infty G(f) df} = \frac{2\int_0^{B_{90}} G(f) df}{2\int_0^\infty G(f) df} = \frac{\int_0^{B_{90}} G(f) df}{\int_0^\infty G(f) df},
\end{align}
where \(G(f) = |X_i(f)|^2\) is the energy spectral density of
\(x_i(t)\).

For parts (c) and (d) the problem states you need to perform numerical
integration.

Example:

In an exalier example found in this notebook I found the Fourier
transform of

\begin{align}
 x(t) = \Pi\left(\frac{t-\tau/2}{\tau}\right) - \Pi\left(\frac{t+\tau/2}{\tau}\right)
\end{align}
to be

\begin{align}
 X(f) &= 2j\ \text{sinc}(f\tau)\cdot\sin(\pi f\tau)
\end{align}
Note I have modified the problem to now have pulse width \(\tau\) to
better match the homework problem where \(\tau\) is a variable.

The energy spectral density is

\begin{align}
 G(f) = 4\, \text{sinc}^2(f\tau)\cdot\sin^2(\pi f\tau)
\end{align}
I convenient way to numerically integrate \(G(f)\) is using simple
reactangular partitions, but making sure that \(\Delta f\) is small
relative to the changes in \(G(f)\). Since you do not know what the
value of \(\tau\) you consider a normalized frequency variable
\(f_n = f\tau\) in the analysis. The rest of the steps are:

	Sweep \(G(f_n)\) using an array fn running from zero to
\(f_n\) large enough to insure that \(G(f_n)\) is very small
relative to it largest value. In Python this is just filling an
array, Gn with the functional values.

	Form a new array which contains the cumulative sum of the values in
Gn, say Gn_cumsum = cumsum(Gn). Aso form the sum of the array
values, i.e., Gn_tot = sum(Gn)

	Plot the ratio of `Gn_cumsum/Gn_sum versus fn. The curve
should start at zero and climb to one as \(f_n\) becomes large.
The value of \(f_n\) where the curve crosses through 0.9 is the
90% containment bandwidth.

Note: You might notice that \(\Delta f\), which is needed in the
rectangular integration formula was never used. Why? In the calculation
of the cumulative sum and the calculation of the total, both should
include \(\Delta f\), hence in the ration the values cancel out.
Nice!

In [43]:

fn = arange(0,10,.001)
Gn = 4*sinc(fn)**2 * sin(pi*fn)**2
Gn_cumsum = cumsum(Gn)
Gn_tot = sum(Gn)
plot(fn,Gn_cumsum/Gn_tot)
grid()
xlabel('Normalized Frequency $f\tau$')
ylabel('Fractional Power Containment');

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_89_0.svg]

In [44]:

fn_idx = find(abs(Gn_cumsum/Gn_tot - 0.9)< 0.0005)
fn_idx

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/ipykernel_launcher.py:1: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
 """Entry point for launching an IPython kernel.

Out[44]:

array([1446, 1447, 1448, 1449, 1450])

In [45]:

print('The normalized 90 percent containment bandwidth is %2.2f Hz-s.' \
 % fn[1448])

The normalized 90 percent containment bandwidth is 1.45 Hz-s.

Filter Analysis

To facilitate the performance analysis of both discrete-time and
continuous-time filters, the functions freqz_resp() and
freqs_resp() are available (definitions below, respectively). With
these functions you can quickly move from z-domain or s-domain
rational system function coefficients to visualization of the filter
frequency response * Magnitude * Magnitude in dB * Phase in radians
* Group delay in samples or seconds (digital filter) * Group delay in
seconds (analog filter)

In [46]:

def freqz_resp(b,a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)):
 """
 A method for displaying digital filter frequency response magnitude,
 phase, and group delay. A plot is produced using matplotlib

 freq_resp(self,mode = 'dB',Npts = 1024)

 A method for displaying the filter frequency response magnitude,
 phase, and group delay. A plot is produced using matplotlib

 freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode = 'dB',Npts = 1024,fsize=(6,4))

 b = ndarray of numerator coefficients
 a = ndarray of denominator coefficents
 Dmin = start frequency as 10**Dmin
 Dmax = stop frequency as 10**Dmax
 mode = display mode: 'dB' magnitude, 'phase' in radians, or
 'groupdelay_s' in samples and 'groupdelay_t' in sec,
 all versus frequency in Hz
 Npts = number of points to plot; defult is 1024
 fsize = figure size; defult is (6,4) inches

 Mark Wickert, January 2015
 """
 f = np.arange(0,Npts)/(2.0*Npts)
 w,H = signal.freqz(b,a,2*np.pi*f)
 plt.figure(figsize=fsize)
 if mode.lower() == 'db':
 plt.plot(f*fs,20*np.log10(np.abs(H)))
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Gain (dB)')
 plt.title('Frequency Response - Magnitude')

 elif mode.lower() == 'phase':
 plt.plot(f*fs,np.angle(H))
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Phase (rad)')
 plt.title('Frequency Response - Phase')

 elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'):
 """
 Notes

 Since this calculation involves finding the derivative of the
 phase response, care must be taken at phase wrapping points
 and when the phase jumps by +/-pi, which occurs when the
 amplitude response changes sign. Since the amplitude response
 is zero when the sign changes, the jumps do not alter the group
 delay results.
 """
 theta = np.unwrap(np.angle(H))
 # Since theta for an FIR filter is likely to have many pi phase
 # jumps too, we unwrap a second time 2*theta and divide by 2
 theta2 = np.unwrap(2*theta)/2.
 theta_dif = np.diff(theta2)
 f_diff = np.diff(f)
 Tg = -np.diff(theta2)/np.diff(w)
 max_Tg = np.max(Tg)
 #print(max_Tg)
 if mode.lower() == 'groupdelay_t':
 max_Tg /= fs
 plt.plot(f[:-1]*fs,Tg/fs)
 plt.ylim([0,1.2*max_Tg])
 else:
 plt.plot(f[:-1]*fs,Tg)
 plt.ylim([0,1.2*max_Tg])
 plt.xlabel('Frequency (Hz)')
 if mode.lower() == 'groupdelay_t':
 plt.ylabel('Group Delay (s)')
 else:
 plt.ylabel('Group Delay (samples)')
 plt.title('Frequency Response - Group Delay')
 else:
 s1 = 'Error, mode must be "dB", "phase, '
 s2 = '"groupdelay_s", or "groupdelay_t"'
 print(s1 + s2)

In [47]:

def freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode = 'dB',Npts = 1024,fsize=(6,4)):
 """
 A method for displaying analog filter frequency response magnitude,
 phase, and group delay. A plot is produced using matplotlib

 freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode='dB',Npts=1024,fsize=(6,4))

 b = ndarray of numerator coefficients
 a = ndarray of denominator coefficents
 Dmin = start frequency as 10**Dmin
 Dmax = stop frequency as 10**Dmax
 mode = display mode: 'dB' magnitude, 'phase' in radians, or
 'groupdelay', all versus log frequency in Hz
 Npts = number of points to plot; defult is 1024
 fsize = figure size; defult is (6,4) inches

 Mark Wickert, January 2015
 """
 f = np.logspace(Dmin,Dmax,Npts)
 w,H = signal.freqs(b,a,2*np.pi*f)
 plt.figure(figsize=fsize)
 if mode.lower() == 'db':
 plt.semilogx(f,20*np.log10(np.abs(H)))
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Gain (dB)')
 plt.title('Frequency Response - Magnitude')

 elif mode.lower() == 'phase':
 plt.semilogx(f,np.angle(H))
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Phase (rad)')
 plt.title('Frequency Response - Phase')

 elif mode.lower() == 'groupdelay':
 """
 Notes

 See freqz_resp() for calculation details.
 """
 theta = np.unwrap(np.angle(H))
 # Since theta for an FIR filter is likely to have many pi phase
 # jumps too, we unwrap a second time 2*theta and divide by 2
 theta2 = np.unwrap(2*theta)/2.
 theta_dif = np.diff(theta2)
 f_diff = np.diff(f)
 Tg = -np.diff(theta2)/np.diff(w)
 max_Tg = np.max(Tg)
 #print(max_Tg)
 plt.semilogx(f[:-1],Tg)
 plt.ylim([0,1.2*max_Tg])
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Group Delay (s)')
 plt.title('Frequency Response - Group Delay')
 else:
 print('Error, mode must be "dB" or "phase or "groupdelay"')

Example: Discrete-Time Chebyshev Type I Bandpass Filter

In [48]:

import sk_dsp_comm.iir_design_helper as iird
import sk_dsp_comm.fir_design_helper as fird

In [49]:

b1,a1,sos1 = iird.IIR_bpf(200,250,300,350,0.1,60.0,1000,'butter')
b2,a2,sos2 = iird.IIR_bpf(200,250,300,350,0.1,60.0,1000,'cheby1')

IIR butter order = 16.
IIR cheby1 order = 12.

In [50]:

figure()
iird.freqz_resp_cas_list([sos1,sos2],'dB',1000)
ylim([-70,0])
grid();
figure()
iird.freqz_resp_cas_list([sos1,sos2],'groupdelay_t',1000)
grid();
figure()
iird.sos_zplane(sos2)

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:346: RuntimeWarning: divide by zero encountered in log10
 plt.plot(f*fs,20*np.log10(np.abs(H)))
/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:379: RuntimeWarning: divide by zero encountered in log10
 idx = pylab.find(20*np.log10(H[:-1]) < -400)
/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:379: RuntimeWarning: invalid value encountered in multiply
 idx = pylab.find(20*np.log10(H[:-1]) < -400)
/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:379: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
 idx = pylab.find(20*np.log10(H[:-1]) < -400)
/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:508: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
 idx_N_mult = mlab.find(N_mult>1)
/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:518: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
 idx_D_mult = mlab.find(D_mult>1)

Out[50]:

(12, 12)

<Figure size 432x288 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_99_3.svg]

<Figure size 432x288 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_99_5.svg]

<Figure size 432x288 with 0 Axes>

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_99_7.svg]

In [51]:

b,a = signal.cheby1(5,.1,2*array([250,300])/1000,btype='bandpass')

In [52]:

freqz_resp(b,a,mode='dB',fs=1000,fsize=(6,2))
grid()
ylim([-80,5]);
xlim([100,400]);
freqz_resp(b,a,mode='groupdelay_s',fs=1000,fsize=(6,2))
grid()
xlim([100,400]);

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_101_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_101_1.svg]

Example: Continuous-Time Bessel Bandpass Filter

In [53]:

bc,ac = signal.bessel(7,2*pi*array([10.0,50.0])*1e6,btype='bandpass',analog=True)

In [54]:

freqs_resp(bc,ac,6,9,mode='dB',fsize=(6,2))
grid()
ylim([-80,5]);
freqs_resp(bc,ac,6,9,mode='groupdelay',fsize=(6,2))
grid()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_104_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_104_1.svg]

Second-Order Butterworth Lowpass Response

Consider a 3rd-order analog Butterworth is the \(s\)-domain having
transfer function \(H(s)\). Using the scipy.signal function
butter() we find the coefficients to the rational transfer function
of the form:

\begin{align}
 H(s) = \frac{\sum_{n=0}^M b_n s^n}{\sum_{n=0}^N a_n s^n}
\end{align}

In [55]:

b3,a3 = signal.butter(3,2*pi*1,analog=True)
freqs_resp(b3,a3,-1,2,mode='dB',fsize=(6,2))
grid()
ylim([-80,5]);
freqs_resp(b3,a3,-1,2,mode='groupdelay',fsize=(6,2))
grid()

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_107_0.svg]

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_107_1.svg]

Obtaining the Step Response via Simulation

Time domain simulation of continuous time system can be performed using
the signal.lsim() function. You have to make sure the time step is
sufficiently small relative to the filter bandwidth.

In [56]:

t = arange(0,2,.0001)
xs = ss.step(t)
tout,ys,x_state = signal.lsim((b3,a3),xs,t)
plot(t,ys)
title(r'Third-Order Butterworth Step Response for $f_3 = 1$ Hz')
ylabel(r'Ste Response')
xlabel(r'Time (s)')
grid();

[image: ../_images/nb_examples_Continuous-Time_Signals_and_Systems_using_sigsys_110_0.svg]

In [1]:

%pylab inline
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d
import sk_dsp_comm.multirate_helper as mrh
import scipy.signal as signal
from IPython.display import Audio, display
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

In [2]:

%config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Filter Design Using the Helper Modules

The Scipy package signal assists with the design of many digital
filter types. As an alternative, here we explore the use of the filter
design modules found in scikit-dsp-comm
(https://github.com/mwickert/scikit-dsp-comm).

In this note we briefly explore the use of
sk_dsp_comm.fir_design_helper and sk_dsp_comm.iir_design_helper.
In the examples that follow we assume the import of these modules is
made as follows:

import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d

The functions in these modules provide an easier and more consistent
interface for both finte impulse response (FIR) (linear phase) and
infinite impulse response (IIR) classical designs. Functions inside
these modules wrap scipy.signal functions and also incorporate new
functionality.

Design From Amplitude Response Requirements

With both fir_design_helper and iir_design_helper a design
starts with amplitude response requirements, that is the filter passband
critical frequencies, stopband critical frequencies, passband ripple,
and stopband attenuation. The number of taps/coefficients (FIR case) or
the filter order (IIR case) needed to meet these requirements is then
determined and the filter coefficients are returned as an ndarray b
for FIR, and for IIR both b and a arrays, and a second-order
sections sos 2D array, with the rows containing the corresponding
cascade of second-order sections toplogy for IIR filters.

For the FIR case we have in the \(z\)-domain

\[H_\text{FIR}(z) = \sum_{k=0}^N b_k z^{-k}\]

with ndarray b = \([b_0, b_1, \ldots, b_N]\). For the IIR case
we have in the \(z\)-domain

\[\begin{split}\begin{align}
 H_\text{IIR}(z) &= \frac{\sum_{k=0}^M b_k z^{-k}}{\sum_{k=1}^N a_k z^{-k}} \\
 &= \prod_{k=0}^{N_s-1} \frac{b_{k0} + b_{k1} z^{-1} + b_{k2} z^{-2}}{1 + a_{k1} z^{-1} + a_{k2} z^{-2}} = \prod_{k=0}^{N_s-1} H_k(z)
\end{align}\end{split}\]

where \(N_s = \lfloor(N+1)/2\rfloor\). For the b/a form the
coefficients are arranged as

b = [b0, b1, ..., bM-1], the numerator filter coefficients
a = [a0, a1, ..., aN-1], the denominator filter ceofficients

For the sos form each row of the 2D sos array corresponds to the
coefficients of \(H_k(z)\), as follows:

SOS_mat = [[b00, b01, b02, 1, a01, a02], #biquad 0
 [b10, b11, b12, 1, a11, a12], #biquad 1
 .
 .
 [bNs-10, bNs-11, bNs-12, 1, aNs-11, aNs-12]] #biquad Ns-1

Linear Phase FIR Filter Design

The primary focus of this module is adding the ability to design linear
phase FIR filters from user friendly amplitude response requirements.

Most digital filter design is motivated by the desire to approach an
ideal filter. Recall an ideal filter will pass signals of a certain of
frequencies and block others. For both analog and digital filters the
designer can choose from a variety of approximation techniques. For
digital filters the approximation techniques fall into the categories of
IIR or FIR. In the design of FIR filters two popular techniques are
truncating the ideal filter impulse response and applying a window, and
optimum equiripple approximations
Oppenheim2010 [https://www.amazon.com/Discrete-Time-Signal-Processing-3rd-Prentice-Hall/dp/0131988425/ref=sr_1_1?ie=UTF8&qid=1519940790&sr=8-1&keywords=oppenheim+discrete+time+signal+processing&dpID=51v48p99JjL&preST=_SX218_BO1,204,203,200_QL40_&dpSrc=srch].
Frequency sampling based approaches are also popular, but will not be
considered here, even though scipy.signal supports all three. Filter
design generally begins with a specification of the desired frequency
response. The filter frequency response may be stated in several ways,
but amplitude response is the most common, e.g., state how
\(H_c(j\Omega)\) or \(H(e^{j\omega}) = H(e^{j2\pi f/f_s})\)
should behave. A completed design consists of the number of coefficients
(taps) required and the coefficients themselves (double precision float
or float64 in Numpy, and float64_t in C). Figure 1, below, shows
amplitude response requirements in terms of filter gain and critical
frequencies for lowpass, highpass, bandpass, and bandstop filters. The
critical frequencies are given here in terms of analog requirements in
Hz. The sampling frequency is assumed to be in Hz. The passband ripple
and stopband attenuation values are in dB. Note in dB terms attenuation
is the negative of gain, e.g., -60 of stopband gain is equivalent to 60
dB of stopband attenuation.

In [3]:

Image('300ppi/FIR_Lowpass_Highpass_Bandpass_Bandstop@300ppi.png',width='90%')

Out[3]:

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_3_0.png]

There are 10 filter design functions and one plotting function available
in fir_design_helper.py. Four functions for designing Kaiser window
based FIR filters and four functions for designing equiripple based FIR
filters. Of the eight just described, they all take in amplitude
response requirements and return a coefficients array. Two of the 10
filter functions are simply wrappers around the scipy.signal
function signal.firwin() for designing filters of a specific order
when one (lowpass) or two (bandpass) critical frequencies are given. The
wrapper functions fix the window type to the firwin default of hann
(hanning). The remamining eight are described below in Table 1. The
plotting function provides an easy means to compare the resulting
frequency response of one or more designs on a single plot. Display
modes allow gain in dB, phase in radians, group delay in samples, and
group delay in seconds for a given sampling rate. This function,
freq_resp_list(), works for both FIR and IIR designs. Table 1
provides the interface details to the eight design functions where
d_stop and d_pass are positive dB values and the critical frequencies
have the same unit as the sampling frequency \(f_s\). These
functions do not create perfect results so some tuning of of the design
parameters may be needed, in addition to bumping the filter order up or
down via N_bump.

In [4]:

Image('300ppi/FIR_Kaiser_Equiripple_Table@300ppi.png',width='80%')

Out[4]:

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_5_0.png]

Design Examples

Example 1: Lowpass with \(f_s = 1\) Hz

For this 31 tap filter we choose the cutoff frequency to be
\(F_c = F_s/8\), or in normalized form \(f_c = 1/8\).

In [5]:

b_k = fir_d.firwin_kaiser_lpf(1/8,1/6,50,1.0)
b_r = fir_d.fir_remez_lpf(1/8,1/6,0.2,50,1.0)

Kaiser Win filter taps = 72.
Remez filter taps = 53.

In [6]:

fir_d.freqz_resp_list([b_k,b_r],[[1],[1]],'dB',fs=1)
ylim([-80,5])
title(r'Kaiser vs Equal Ripple Lowpass')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Kaiser: %d taps' % len(b_k),r'Remez: %d taps' % len(b_r)),loc='best')
grid();

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_9_0.svg]

In [7]:

b_k_hp = fir_d.firwin_kaiser_hpf(1/8,1/6,50,1.0)
b_r_hp = fir_d.fir_remez_hpf(1/8,1/6,0.2,50,1.0)

Kaiser Win filter taps = 72.
Remez filter taps = 53.

In [8]:

fir_d.freqz_resp_list([b_k_hp,b_r_hp],[[1],[1]],'dB',fs=1)
ylim([-80,5])
title(r'Kaiser vs Equal Ripple Lowpass')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Kaiser: %d taps' % len(b_k),r'Remez: %d taps' % len(b_r)),loc='best')
grid();

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_11_0.svg]

In [9]:

b_k_bp = fir_d.firwin_kaiser_bpf(7000,8000,14000,15000,50,48000)
b_r_bp = fir_d.fir_remez_bpf(7000,8000,14000,15000,0.2,50,48000)

Kaiser Win filter taps = 142.
Remez filter taps = 106.

In [10]:

fir_d.freqz_resp_list([b_k_bp,b_r_bp],[[1],[1]],'dB',fs=48)
ylim([-80,5])
title(r'Kaiser vs Equal Ripple Bandpass')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Kaiser: %d taps' % len(b_k_bp),
 r'Remez: %d taps' % len(b_r_bp)),
 loc='lower right')
grid();

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_13_0.svg]

A Design Example Useful for Interpolation or Decimation

Here we consider a lowpass design that needs to pass frequencies from
[0, 4000] Hz with a sampling rate of 96000 Hz. This scenario arises when
building an interpolator using the classes of the scikit-dps-comm
module multirate_helper.py to increase the sampling rate from 8000
Hz to 96000 Hz, or an interpolation factor of \(L = 12\). Note at
the top of this notebook we have also have the import

import sk_dsp_comm.multirate_helper as mrh

so that some of the functionality can be accessed. For more details on
the use of multirate_helper
see [https://mwickert.github.io/scikit-dsp-comm/example_notebooks/multirate_helper/Multirate_Processing.html].

Start with an equalripple design having transition band centered on 4000
Hz with passband ripple of 0.5 dB and stopband attenuation of 60 dB.

In [11]:

b_up = fir_d.fir_remez_lpf(3300,4300,0.5,60,96000)

Remez filter taps = 196.

In [12]:

mr_up = mrh.multirate_FIR(b_up)

FIR filter taps = 196

	Consider the pole-zero configuration for this high-order filter

In [13]:

Take a look at the pole-zero configuration of this very
high-order (many taps) linear phase FIR
mr_up.zplane()

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_18_0.svg]

	Check out the passband and stopband gains

In [14]:

Verify the passband and stopband gains are as expected
mr_up.freq_resp('db',96000)

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_20_0.svg]

	See that the group delay is the expected value of
\((N_\text{taps} - 1)/2 = 98\) samples

In [15]:

(len(b_up-1))/2

Out[15]:

98.0

In [16]:

Verify that the FIR design has constant group delay (N_taps - 1)/2 samples
mr_up.freq_resp('groupdelay_s',96000,[0,100])

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_23_0.svg]

The object mr_up can now be used for interpolation or decimation
with a rate change factor of 12.

Traditional IIR Filter Design using the Bilinear Transform

The scipy.signal package fully supports the design of IIR digital
filters from analog prototypes. IIR filters like FIR filters, are
typically designed with amplitude response requirements in mind. A
collection of design functions are available directly from
scipy.signal for this purpose, in particular the function
scipy.signal.iirdesign(). To make the design of lowpass, highpass,
bandpass, and bandstop filters consistent with the module
fir_design_helper.py the module iir_design_helper.py was
written. Figure 2, below, details how the amplitude response parameters
are defined graphically.

In [17]:

Image('300ppi/IIR_Lowpass_Highpass_Bandpass_Bandstop@300ppi.png',width='90%')

Out[17]:

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_26_0.png]

Within iir_design_helper.py there are four filter design functions
and a collection of supporting functions available. The four filter
design functions are used for designing lowpass, highpass, bandpass, and
bandstop filters, utilizing Butterworth, Chebshev type 1, Chebyshev type
2, and elliptical filter prototypes. See
Oppenheim2010 [https://www.amazon.com/Discrete-Time-Signal-Processing-3rd-Prentice-Hall/dp/0131988425/ref=sr_1_1?ie=UTF8&qid=1519940790&sr=8-1&keywords=oppenheim+discrete+time+signal+processing&dpID=51v48p99JjL&preST=_SX218_BO1,204,203,200_QL40_&dpSrc=srch]
and ECE 5650 notes Chapter
9 [http://www.eas.uccs.edu/~mwickert/ece5650/notes/N5650_9.pdf] for
detailed design information. The function interfaces are described in
Table 2.

In [18]:

Image('300ppi/IIR_Table@300ppi.png',width='80%')

Out[18]:

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_28_0.png]

The filter functions return the filter coefficients in two formats:

	Traditional transfer function form as numerator coefficients b
and denominator a coefficients arrays, and

	Cascade of biquadratic sections form using the previously introduced
sos 2D array or matrix.

Both are provided to allow further analysis with either a direct form
topology or the sos form. The underlying signal.iirdesign() function
also provides a third option: a list of poles and zeros. The sos
form desireable for high precision filters, as it is more robust to
coefficient quantization, in spite using double precision coefficients
in the b and a arrays.

Of the remaining support functions four are also described in Table 2,
above. The most significant functions are freqz_resp_cas_list,
available for graphically comparing the frequency response over several
designs, and sos_zplane a function for plotting the pole-zero
pattern. Both operate using the sos matrix. A transfer function form
(b/a) for frequency response plotting, freqz_resp_list, is also
present in the module. This function was first introduced in the FIR
design section. The frequency response function plotting offers modes
for gain in dB, phase in radians, group delay in samples, and group
delay in seconds, all for a given sampling rate in Hz. The pole-zero
plotting function locates pole and zeros more accurately than
sk_dsp_commsigsys.zplane, as the numpy function roots() is only
solving quadratic polynomials. Also, repeated roots can be displayed as
theoretically expected, and also so noted in the graphical display by
superscripts next to the pole and zero markers.

IIR Design Based on the Bilinear Transformation

There are multiple ways of designing IIR filters based on amplitude
response requirements. When the desire is to have the filter
approximation follow an analog prototype such as Butterworth, Chebychev,
etc., is using the bilinear transformation. The function
signal.iirdesign() described above does exactly this.

In the example below we consider lowpass amplitude response requirements
and see how the filter order changes when we choose different analog
prototypes.

Example: Lowpass Design Comparison

The lowpass amplitude response requirements given \(f_s = 48\) kHz
are: 1. \(f_\text{pass} = 5\) kHz 2. \(f_\text{stop} = 8\) kHz
3. Passband ripple of 0.5 dB 4. Stopband attenuation of 60 dB

Design four filters to meet the same requirements: butter,
cheby1, ,cheby2, and ellip:

In [19]:

fs = 48000
f_pass = 5000
f_stop = 8000
b_but,a_but,sos_but = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter')
b_cheb1,a_cheb1,sos_cheb1 = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1')
b_cheb2,a_cheb2,sos_cheb2 = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2')
b_elli,a_elli,sos_elli = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip')

IIR butter order = 15.
IIR cheby1 order = 8.
IIR cheby2 order = 8.
IIR ellip order = 6.

Frequency Response Comparison

Here we compare the magnitude response in dB using the sos form of
each filter as the input. The elliptic is the most efficient, and
actually over achieves by reaching the stopband requirement at less than
8 kHz.

In [20]:

iir_d.freqz_resp_cas_list([sos_but,sos_cheb1,sos_cheb2,sos_elli],'dB',fs=48)
ylim([-80,5])
title(r'IIR Lowpass Compare')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Butter order: %d' % (len(a_but)-1),
 r'Cheby1 order: %d' % (len(a_cheb1)-1),
 r'Cheby2 order: %d' % (len(a_cheb2)-1),
 r'Elliptic order: %d' % (len(a_elli)-1)),loc='best')
grid();

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_33_0.svg]

Next plot the pole-zero configuration of just the butterworth design.
Here we use the a special version of ss.zplane that works with the
sos 2D array.

In [21]:

iir_d.sos_zplane(sos_but)

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:508: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
 idx_N_mult = mlab.find(N_mult>1)
/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:518: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
 idx_D_mult = mlab.find(D_mult>1)

Out[21]:

(15, 15)

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_35_2.svg]

Note the two plots above can also be obtained using the transfer
function form via iir_d.freqz_resp_list([b],[a],'dB',fs=48) and
ss.zplane(b,a), respectively. The sos form will yield more
accurate results, as it is less sensitive to coefficient quantization.
This is particularly true for the pole-zero plot, as rooting a 15th
degree polynomial is far more subject to errors than rooting a simple
quadratic.

For the 15th-order Butterworth the bilinear transformation maps the
expected 15 s-domain zeros at infinity to \(z=-1\). If you use
sk_dsp_comm.sigsys.zplane() you will find that the 15 zeros at are
in a tight circle around \(z=-1\), indicating polynomial rooting
errors. Likewise the frequency response will be more accurate.

Signal filtering of ndarray x is done using the filter designs is
done using functions from scipy.signal:

	For transfer function form y = signal.lfilter(b,a,x)

	For sos form y = signal.sosfilt(sos,x)

A Half-Band Filter Design to Pass up to \(W/2\) when \(f_s = 8\) kHz

Here we consider a lowpass design that needs to pass frequencies up to
\(f_s/4\). Specifically when \(f_s = 8000\) Hz, the filter
passband becomes [0, 2000] Hz. Once the coefficients are found a
mrh.multirate object is created to allow further study of the
filter, and ultimately implement filtering of a white noise signal.

Start with an elliptical design having transition band centered on 2000
Hz with passband ripple of 0.5 dB and stopband attenuation of 80 dB. The
transition bandwidth is set to 100 Hz, with 50 Hz on either side of 2000
Hz.

In [22]:

Elliptic IIR Lowpass
b_lp,a_lp,sos_lp = iir_d.IIR_lpf(1950,2050,0.5,80,8000.,'ellip')
mr_lp = mrh.multirate_IIR(sos_lp)

IIR ellip order = 11.
IIR filter order = 11

In [23]:

mr_lp.freq_resp('db',8000)

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_39_0.svg]

Pass Gaussian white noise of variance \(\sigma_x^2 = 1\) through the
filter. Use a lot of samples so the spectral estimate can accurately
form
\(S_y(f) = \sigma_x^2\cdot |H(e^{j2\pi f/f_s})|^2 = |H(e^{j2\pi f/f_s})|^2\).

In [24]:

x = randn(1000000)
y = mr_lp.filter(x)
psd(x,2**10,8000);
psd(y,2**10,8000);
title(r'Filtering White Noise Having $\sigma_x^2 = 1$')
legend(('Input PSD','Output PSD'),loc='best')
ylim([-130,-30])

Out[24]:

(-130, -30)

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_41_1.svg]

In [25]:

fs = 8000
print('Expected PSD of %2.3f dB/Hz' % (0-10*log10(fs),))

Expected PSD of -39.031 dB/Hz

Amplitude Response Bandpass Design

Here we consider FIR and IIR bandpass designs for use in an SSB
demodulator to remove potential adjacent channel signals sitting either
side of a frequency band running from 23 kHz to 24 kHz.

In [26]:

b_rec_bpf1 = fir_d.fir_remez_bpf(23000,24000,28000,29000,0.5,70,96000,8)
fir_d.freqz_resp_list([b_rec_bpf1],[1],mode='dB',fs=96000)
ylim([-80, 5])
grid();

Remez filter taps = 241.

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_44_1.svg]

The group delay is flat (constant) by virture of the design having
linear phase.

In [27]:

b_rec_bpf1 = fir_d.fir_remez_bpf(23000,24000,28000,29000,0.5,70,96000,8)
fir_d.freqz_resp_list([b_rec_bpf1],[1],mode='groupdelay_s',fs=96000)
grid();

Remez filter taps = 241.

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_46_1.svg]

Compare the FIR design with an elliptical design:

In [28]:

b_rec_bpf2,a_rec_bpf2,sos_rec_bpf2 = iir_d.IIR_bpf(23000,24000,28000,29000,
 0.5,70,96000,'ellip')
with np.errstate(divide='ignore'):
 iir_d.freqz_resp_cas_list([sos_rec_bpf2],mode='dB',fs=96000)
ylim([-80, 5])
grid();

IIR ellip order = 14.

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_48_1.svg]

This high order elliptic has a nice tight amplitude response for minimal
coefficients, but the group delay is terrible:

In [29]:

with np.errstate(divide='ignore', invalid='ignore'): #manage singularity warnings
 iir_d.freqz_resp_cas_list([sos_rec_bpf2],mode='groupdelay_s',fs=96000)
#ylim([-80, 5])
grid();

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:379: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
 idx = pylab.find(20*np.log10(H[:-1]) < -400)

[image: ../_images/nb_examples_FIR_and_IIR_Filter_Design_50_1.svg]

In [1]:

%pylab inline
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d
import sk_dsp_comm.multirate_helper as mrh
import scipy.signal as signal
from IPython.display import Audio, display
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

In [2]:

%config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Multirate Signal Processing Using multirate_helper

In this section the classes multirate_FIR and multirate_IIR,
found in the module sk_dsp_comm.multirate_helper, are discussed with
the aim of seeing how they can be used to filter, interpolate (upsample
and filter), and decimate (filter and downsample) discrete time signals.
Fundamentally the processing consists of two elements: (1) and upsampler
or downsampler and (2) a lowpass filter.

Fundamentally this modules provides classes to change the sampling rate
by an integer factor, either up, interpolation or down, decimation,
with integrated filtering to supress spectral images or aliases,
respectively. The top level block diagram of the interpolator and
decimator are given in the following two figures. The frequencies given
in the figures assume that the interpolator is rate chainging from 8
ksps to 96 ksps (\(L=12\)) and the decimator is rate changing from
96 ksps to 8 ksps (\(M=12\)). This is for example purposes only. The
FIR/IIR filter cutoff frequency will in general be
\(f_c = f_\text{s,out}/(2L)\) for the decimator and
\(f_c = f_\text{s,in}/(2M)\). The primitives to implement the
classes are available in sk_dsp_comm.sigsys and scipy.signal.

In [3]:

Image('300ppi/Interpolator_Top_Level@300ppi.png',width='60%')

Out[3]:

[image: ../_images/nb_examples_Multirate_Processing_3_0.png]

In [4]:

Image('300ppi/Decimator_Top_Level@300ppi.png',width='60%')

Out[4]:

[image: ../_images/nb_examples_Multirate_Processing_4_0.png]

The upsample block, shown above with arrow pointing up and integer
\(L=12\) next to the arrow, takes the input sequence and produces
the output sequence by inserting \(L-1\) (as shown here 11) zero
samples between each input sample. The downsample block, shown above
with arrow pointing down and integer \(M=12\) next to the arrow,
takes the input sequence and retains at the output sequence every
\(M\)th (as shown here 12th) sample.

The impact of these blocks in the frequency domain is a little harder to
explain. In words, the spectrum at the output of the upsampler is
compressed by the factor \(L\), such that it will contain \(L\)
spectral images, including the fundamental image centered at
\(f = 0\), evenly spaced up to the sampling \(f_s\). Overall the
spectrum of \(x_\text{up}[n]\) is of course periodic with respect to
the sampling rate. The lowpass filter interpolates signal sample values
from the non-zero samples where the zero samples reside. It is this
interpolation that effectively removed or suppresses the spectral images
outside the interval \(|f| > f_s/(2L)\).

For the downsampler the input spectrum is stretched along the frequency
axis by the factor \(M\), with aliasing from frequency bands outside
\(|f| < f_s/(2M)\). To avoid aliasing the lowpass filter blocks
input signals for \(f > f_s/(2M)\).

To get started using the module you will need an import similar to:

import sk_dsp_comm.multirate_helper as mrh

The rate_change Class

We start with the description of a third class, mrh.rate_change,
which is simplistic, offering little user interaction, but automatically
designs the required lowpass filter you see in the above block diagrams.
Below is a table which describes this class:

In [5]:

Image('300ppi/Multirate_Table1@300ppi.png',width='85%')

Out[5]:

[image: ../_images/nb_examples_Multirate_Processing_6_0.png]

This class is used in the analog modulation demos for the ECE 4625/5625
Chapter 3 Jupyter
notebook [http://www.eas.uccs.edu/~mwickert/ece5625/lecture_notes/5625_Chapter_3_IPYNB.zip].
Using this class you can quickly create a interpolation or decimation
block with the necessary lowpass filter automatically designed and
implemented. Fine tuning of the filter is limited to choosing the filter
order and the cutoff frequency as a fraction of the signal bandwidth
given the rate change integer, \(L\) or \(M\). The filter type
is also limited to Butterworth or Chebyshev type 1 having passband
ripple of 0.05 dB.

A Simple Example

Pass a sinusoidal signal through an \(L=4\) interpolator. Verify
that spectral images occur with the use of the interpolation lowpass
filter.

In [6]:

fs_in = 8000
M = 4
fs_out = M*fs_in
rc1 = mrh.rate_change(M) # Rate change by 4
n = arange(0,1000)
x = cos(2*pi*1000/fs_in*n)
x_up = ss.upsample(x,4)
y = rc1.up(x)

Time Domain

In [7]:

subplot(211)
stem(n[500:550],x_up[500:550]);
ylabel(r'$x_{up}[n]$')
title(r'Upsample by $L=4$ Output')
#ylim(-100,-10)
subplot(212)
stem(n[500:550],y[500:550]);
ylabel(r'$y[n]$')
xlabel(r'')
title(r'Interpolate by $L=4$ Output')
#ylim(-100,-10)
tight_layout()

[image: ../_images/nb_examples_Multirate_Processing_10_0.svg]

	Clearly the lowpass interpolation filter has done a good job of
filling in values for the zero samples

Frequency Domain

In [8]:

subplot(211)
psd(x_up,2**10,fs_out);
ylabel(r'PSD (dB)')
title(r'Upsample by $L=4$ Output')
ylim(-100,-10)
subplot(212)
psd(y,2**10,fs_out);
ylabel(r'PSD (dB)')
title(r'Interpolate by $L=4$ Output')
ylim(-100,-10)
tight_layout()

[image: ../_images/nb_examples_Multirate_Processing_13_0.svg]

	The filtering action of the LPF does its best to suppress the images
at 7000, 9000, and 15000 Hz.

The multirate_FIR Class

With this class you implement an object that can filter, interpolate, or
decimate a signal. Additionally support methods drill into the
characteristics of the lowpass filter at the heart of the processing
block. To use this class the user must supply FIR filter coefficients
that implement a lowpass filter with cutoff frequency appropriate for
the desired interpolation of decimation factor. The module
sk_dsp_com.FIR_design_helper is capable of delivering the need
filter coefficients array. See FIR design helper
notes [https://mwickert.github.io/scikit-dsp-comm/example_notebooks/FIR_IIR_design_helper/FIR_and_IIR_Filter_Design.html]
for multirate filter design examples.

With FIR coefficients in hand it is an easy matter to create an
multirate FIR object capable of filtering, interpolation, or decimation.
The details of the class interface are given in Table 2 below.

In [9]:

Image('300ppi/Multirate_Table2@300ppi.png',width='85%')

Out[9]:

[image: ../_images/nb_examples_Multirate_Processing_16_0.png]

Notice that the class also provides a means to obtain frequency response
plots and pole-zero plots directly from the instantiated multirate
objects.

FIR Interpolator Design Example

Here we take the earlier lowpass filter designed to interpolate a signal
being upsampled from \(f_{s1} = 8000\) kHz to \(f_{s2} = 96\)
kHz. The upsampling factor is \(L = f_{s2}/f_{s1} = 12\). The ideal
interpolation filter should cutoff at
\(f_{s1}/2 = f_{s2}/(2\cdot 12) = 8000/2 = 4000\) Hz.

Recall the upsampler (y = ss.upsampler(x, L)) inserts \(L-1\)
samples between each input sample. In the frequency domain the zero
insertion replicates the input spectrum on \([0,f_{s1}/2]\)
\(L\) times over the interval \([0,f_{s2}]\) (equivalently
\(L/2\) times on the inteval \([0f_{s2}/2]\). The lowpass
interpolation filter serves to removes the images above
\(f_{s2}/(2L)\) in the frequency domain and in so doing filling in
the zeros samples with waveform interpolants in the time domain.

In [10]:

Design the filter core for an interpolator used in changing the sampling rate from 8000 Hz
to 96000 Hz
b_up = fir_d.fir_remez_lpf(3300,4300,0.5,60,96000)
Create the multirate object
mrh_up = mrh.multirate_FIR(b_up)

Remez filter taps = 196.
FIR filter taps = 196

As an input consider a sinusoid at 1 kHz and observe the interpolator
output spectrum compared with the input spectrum.

In [11]:

Sinusoidal test signal
n = arange(10000)
x = cos(2*pi*1000/8000*n)
Interpolate by 12 (upsample by 12 followed by lowpass filter)
y = mrh_up.up(x,12)

In [12]:

Plot the results
subplot(211)
psd(x,2**12,8000);
title(r'1 KHz Sinusoid Input to $L=12$ Interpolator')
ylabel(r'PSD (dB)')
ylim([-100,0])
subplot(212)
psd(y,2**12,12*8000)
title(r'1 KHz Sinusoid Output from $L=12$ Interpolator')
ylabel(r'PSD (dB)')
ylim([-100,0])
tight_layout()

[image: ../_images/nb_examples_Multirate_Processing_21_0.svg]

In the above spectrum plots notice that images of the input 1 kHz
sinusoid are down \(\simeq 60\) dB, which is precisely the stop band
attenuation provided by the interpolation filter. The variation is due
to the stopband ripple.

The multirate_IIR Class

With this class, as with multirate_FIR you implement an object that
can filter, interpolate, or decimate a signal. The filter in this case
is a user supplied IIR filter in second-order sections (sos) form.
Additionally support methods drill into the characteristics of the
lowpass filter at the heart of the procssing block. The module
sk_dsp_com.IIR_design_helper is capable of delivering the need
filter coefficients array. See IIR design helper
notes [https://mwickert.github.io/scikit-dsp-comm/example_notebooks/FIR_IIR_design_helper/FIR_and_IIR_Filter_Design.html]
for multirate filter design examples.

With IIR coefficients in hand it is an easy matter to create an
multirate IIR object capable of filtering, interpolation, or decimation.
The details of the class interface are given in Table 3 below.

In [13]:

Image('300ppi/Multirate_Table3@300ppi.png',width='85%')

Out[13]:

[image: ../_images/nb_examples_Multirate_Processing_24_0.png]

IIR Decimator Design Example

Whan a signal is decimated the signal is first lowpass filtered then
downsampled. The lowpass filter serves to prevent aliasing as the
sampling rate is reduced. Downsampling by \(M\)
(y = ss.downsample(x, M)) removes \(M-1\) sampling for every
\(M\) sampling input or equivalently retains one sample out of
\(M\). The lowpass prefilter has cutoff frequency equal to the
folding frequency of the output sampling rate, i.e.,
\(f_c = f_{s2}/2\). Note avoid confusion with the project
requirements, where the decimator is needed to take a rate
\(f_{s2}\) signal back to \(f_{s1}\), let the input sampling
rate be \(f_{s2} = 96000\) HZ and the output sampling rate be
\(f_{s1} = 8000\) Hz. The input sampling rate is \(M\) times the
output rate, i.e., \(f_{s2} = Mf_{s1}\), so you design the lowpass
filter to have cutoff \(f_c = f_{s2}/(2\cdot L)\).

ECE 5625 Important Observation: In the coherent SSB demodulator of
Project 1, the decimator can be conveniently integrated with the lowpass
filter that serves to remove the double frequency term.

In the example that follows a Chebyshev type 1 lowpass filter is
designed to have cutoff around 4000 Hz. A sinusoid is used as a test
input signal at sampling rate 96000 Hz.

In [14]:

Design the filter core for a decimator used in changing the
sampling rate from 96000 Hz to 8000 Hz
b_dn, a_dn, sos_dn = iir_d.IIR_lpf(3300,4300,0.5,60,96000,'cheby1')
Create the multirate object
mrh_dn = mrh.multirate_IIR(sos_dn)
mrh_dn.freq_resp('dB',96000)
title(r'Decimation Filter Frequency Response - Magnitude');

IIR cheby1 order = 12.
IIR filter order = 12

[image: ../_images/nb_examples_Multirate_Processing_26_1.svg]

	Note the Chebyshev lowpass filter design above is very efficient
compared with the 196-tap FIR lowpass designed for use in the
interpolator. It is perhaps a better overall choice. The FIR has
linear phase and the IIR filter does not, but for the project this is
not really an issue.

As an input consider a sinusoid at 1 kHz and observe the interpolator
output spectrum compared with the input spectrum.

In [15]:

Sinusoidal test signal
n = arange(100000)
x = cos(2*pi*1000/96000*n)
Decimate by 12 (lowpass filter followed by downsample by 12)
y = mrh_dn.dn(x,12)

In [16]:

Plot the results
subplot(211)
psd(x,2**12,96000);
title(r'1 KHz Sinusoid Input to $M=12$ Decimator')
ylabel(r'PSD (dB)')
ylim([-100,0])
subplot(212)
psd(y,2**12,8000)
title(r'1 KHz Sinusoid Output from $M=12$ Decimator')
ylabel(r'PSD (dB)')
ylim([-100,0])
tight_layout()

[image: ../_images/nb_examples_Multirate_Processing_29_0.svg]

In [1]:

%pylab inline
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.pyaudio_helper as pah
import sk_dsp_comm.fir_design_helper as fir_d
import scipy.signal as signal
import scipy.io as io
from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets
from IPython.display import Audio, display
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

In [2]:

pylab.rcParams['savefig.dpi'] = 100 # default 72
%config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Introduction

A simplified block diagram of PyAudio streaming-based (nonblocking)
signal processing when using pyaudio_helper and ipython widgets.

In [3]:

Image("audio_files/pyaudio_dsp_IO.png", width="90%")

Out[3]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_3_0.png]

Available Audio I/O Devices

If you add or delete devices by plugging or unplugging USB audio
ibterface, this list becomdes invalid. Restart the kernel and run again
to get the correct device index list. For two channel apps both the
input and output devices must support two channels. For the Sabrent USB
audio devices, which has one input and two outputs, Windows for example
may improperly list the devices as having two inputs.

pah.available_devices()

Index 0 device name = Built-in Microph, inputs = 2, outputs = 0

Index 1 device name = Built-in Output, inputs = 0, outputs = 2

Real-Time Loop Through

Here we set up a simple callback function that passes the input
samples directly to the output. The module pyaudio_support provides
a class for managing a pyaudio stream object, capturing the samples
processed by the callback function, and collection of performance
metrics. Once the callback function is written/declared a
DSP_io_stream object can be created and then the stream(Tsec)
method can be executed to start the input/output processing, e.g.,

import pyaudio_helper as pah

DSP_IO = pah.DSP_io_stream(callback,in_idx, out_idx)
DSP_IO.interactive_stream(Tsec = 2, numChan = 1)

where in_idx is the index of the chosen input device found using
available_devices() and similarly out_idx is the index of the
chosen output device.

	The callback function must be written first as the function name
used by the object to call the callback.

No globals required here as there is no instrumentation configured,
externally defined algorithm coefficients, and no widgets being used.

In [4]:

define a pass through, y = x, callback
def callback(in_data, frame_count, time_info, status):
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 #***
 # DSP operations here
 # Here we simply pass the input to the output, i.e.
 # y[n] = x[n]
 x = in_data_nda.astype(float32)
 y = x
 # Typically more DSP code here
 #
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 # Convert ndarray back to bytes
 return y.tobytes(), pah.pyaudio.paContinue

This callback makes use of the instrumentation capabilities of the
DSP_io_stream and also has a simple lowpass filter waiting
in-the-wings if a line of code in commented out and a following line
is uncomments, e.g.,

#y = x
Typically more DSP code here
y, zi = signal.lfilter(b,a,x,zi=zi) # for FIR or simple IIR

Notice that globals are now used for the DSP_IO object, the
filter coefficients in arrays, a and b, and also the filter
states held in the array zi. In its present form te filtering is
commented out, but can be uncommented to allow a simple 1st-order IIR
lowpass filter to operate on one channel of audio streaming through the
system.

In [5]:

Add a simple IIR LPF
fs = 48000 # Assummed sampling rate
f3 = 1000 # Hz
a = [1, -exp(-2*pi*f3/fs)]
b = [1 - exp(-2*pi*f3/fs)]
zi = signal.lfiltic(b,a,[0])

In [6]:

define a pass through, y = x, callback
def callback(in_data, frame_length, time_info, status):
 global DSP_IO, b, a, zi
 DSP_IO.DSP_callback_tic()
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 #***
 # DSP operations here
 # Here we apply a linear filter to the input
 x = in_data_nda.astype(float32)
 y = x
 # Typically more DSP code here
 #y, zi = signal.lfilter(b,a,x,zi=zi) # for FIR or simple IIR
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples(y)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 # Convert ndarray back to bytes
 #return (in_data_nda.tobytes(), pyaudio.paContinue)
 return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback,in_idx=0,out_idx=1,fs=48000,Tcapture=0)

Index 0 device name = Built-in Microph, inputs = 2, outputs = 0

Index 1 device name = Built-in Output, inputs = 0, outputs = 2

DSP_IO.interactive_stream(Tsec=0,numChan=1)

In [7]:

Image("audio_files/start_stop_stream.png", width='55%')

Out[7]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_16_0.png]

With the iMic plugged in the input/output device indices can be
reconfigured to use the iMic index for both the input output streams.
The Analog Discovery
(AD2) [https://store.digilentinc.com/analog-discovery-2-100msps-usb-oscilloscope-logic-analyzer-and-variable-power-supply/]
is then used to drive a white noise test signal into the ADC and capture
the output from the DAC. This allows us to measure the ADC-DAC frequency
response using a long-term time average spectral estimate capabilities
of the AD2. A second test capture is to use
DSP_IO.DSP_capture_add_samples(y) to capture the response of the ADC
alone, and perform spectral analysis here in the Jupyter notebook. For
this capture we set Tcapture=20s two cells above and Tsec=20
one cell above. A comparison of the ADC-alone and ADC-DAC spectrum
normalized to look like the frequency response is done in the cell
below.

In [8]:

f_AD,Mag_AD = loadtxt('audio_files/Loop_through_noise_SA_iMic.csv',
 delimiter=',',skiprows=6,unpack=True)
plot(f_AD,Mag_AD-Mag_AD[100])
ylim([-10,5])
xlim([0,20e3])
ylabel(r'ADC Gain Flatness (dB)')
xlabel(r'Frequency (Hz)')
legend((r'ADC-DAC from AD2 SA dB Avg',))
title(r'Loop Through Gain Flatness using iMic at $f_s = 48$ kHz')
grid();

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_18_0.svg]

The callback stats when capturing data using
DSP_IO.DSP_capture_add_samples(y) and a plot of the time domain
samples.

Nstop = 1000
plot(arange(0,len(DSP_IO.data_capture[:Nstop]))/48000,DSP_IO.data_capture[:Nstop])
DSP_IO.stream_stats()

Note for a attributes used in the above examples the frame_length is
always 1024 samples and the sampling rate \(f_s = 48\) ksps. The
ideal callback period is this

\[T_{cb} = \frac{1024}{480100} = 21.33\ \text{(ms)}\]

Next consider what the captures tic and toc data revels about
the processing. Calling the method cb_active_plot() produces a plot
similar to what an electrical engineer would see what using a logic
analyzer to show the time spent in an interrupt service routine of an
embedded system. The latency is also evident. You expect to see a
minimum latency of two frame lengths (input buffer fill and output
buffer fill),e.g.,

\[T_\text{latency} >= 2\times \frac{1024}{48000} \times 1000 = 42.6\ \text{(ms)}\]

The host processor is multitasking, so the latency can be even greater.
A true real-time DSP system would give the signal processing high
priority and hence much lower is expected, particularly if the
frame_length can be made small.

Real-Time Filtering

Here we set up a callback function that filters the input samples
and then sends them to the output.

import pyaudio_helper as pah

DSP_IO = pah.DSP_io_stream(callback,in_idx, out_idx)
DSP_IO.interactive_stream(2,1)

where in_idx is the index of the chosen input device found using
available_devices() and similarly out_idx is the index of the
chosen output device.

	The callback function must be written first as the function name
is used by the object to call the callback

	To demonstrate this we first design some filters that can be used in
testing

In [9]:

b = fir_d.fir_remez_bpf(2700,3200,4800,5300,.5,50,48000,18)
a = [1]
fir_d.freqz_resp_list([b],[1],'dB',48000)
ylim([-60,5])
grid();
zi = signal.lfiltic(b,a,[0])

Remez filter taps = 192.

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_24_1.svg]

In [10]:

f_AD,Mag_AD = loadtxt('audio_files/FIR_BPF_2700_3200_4800_5300_p5dB_50dB_48k.csv',
 delimiter=',',skiprows=6,unpack=True)
plot(f_AD,Mag_AD-max(Mag_AD)+1)
f = arange(0,20000,10)
w,H_BPF = signal.freqz(b,1,2*pi*f/48000)
plot(f,20*log10(abs(H_BPF)))
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
legend((r'AD2 Noise Measured',r'Design Theory'))
title(r'4 kHz 182-Tap FIR Bandpass Design at $f_s = 48$ kHz')
ylim([-60,5])
xlim([2000,8000])
grid();

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_25_0.svg]

In [11]:

Design an IIR Notch
b, a = ss.fir_iir_notch(2000,48000,r= 0.9)
fir_d.freqz_resp_list([b],[a],'dB',48000,4096)
ylim([-60,5])
grid();
zi = signal.lfiltic(b,a,[0])

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_26_0.svg]

Create some global variables for the filter coefficients and the filter
state array (recall that a filter has memory).

In [12]:

define callback (#2)
def callback2(in_data, frame_count, time_info, status):
 global DSP_IO, b, a, zi
 DSP_IO.DSP_callback_tic()
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 #***
 # DSP operations here
 # Here we apply a linear filter to the input
 x = 5*in_data_nda.astype(float32)
 #y = x
 # The filter state/(memory), zi, must be maintained from frame-to-frame
 # for FIR or simple IIR
 y, zi = signal.lfilter(b,a,x,zi=zi)
 # for IIR use second-order sections
 #y, zi = signal.sosfilt(sos,x,zi=zi)
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples(y)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback2,2,2,fs=48000,Tcapture=0)

DSP_IO.interactive_stream(Tsec=0,numChan=1)

In [13]:

Image("audio_files/start_stop_stream.png", width='55%')

Out[13]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_31_0.png]

Playback Only Using an Audio Loop

A playback audio loop is created using the pah.loop_audio class
filled with samples input from a wav file. In the example below we
take a two-channel (stereo) wav file and convert to one channel.

In [14]:

define callback (3)
Here we configure the callback to play back a wav file
def callback3(in_data, frame_count, time_info, status):
 global DSP_IO, x
 DSP_IO.DSP_callback_tic()

 # Ignore in_data when generating output only
 #***
 global x
 # Note wav is scaled to [-1,1] so need to rescale to int16
 y = 32767*x.get_samples(frame_count)
 # Perform real-time DSP here if desired
 #
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples(y)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 return y.tobytes(), pah.pyaudio.paContinue

fs, x_wav2 = ss.from_wav('Music_Test.wav')
x_wav = (x_wav2[:,0] + x_wav2[:,1])/2
x = pah.loop_audio(x_wav)
DSP_IO = pah.DSP_io_stream(callback3,0,1,fs=44100,Tcapture=2)
DSP_IO.interactive_stream(20) # play for 20s but capture only the last 2s

In [15]:

Image("audio_files/start_stop_stream.png", width='55%')

Out[15]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_35_0.png]

Npts = 96000
Nstart = 0
plot(arange(len(DSP_IO.data_capture[Nstart:Nstart+Npts]))*1000/44100,
 DSP_IO.data_capture[Nstart:Nstart+Npts]/2**(16-1))
title(r'A Portion of the capture buffer')
ylabel(r'Normalized Amplitude')
xlabel(r'Time (ms)')
grid();

In [16]:

Image("audio_files/music_buffer_plot.png", width="75%")

Out[16]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_37_0.png]

Finally, the spectrum of the output signal. To apply custom scaling we
use a variation of psd() found in the sigsys module. If we are
plotting the spectrum of white noise sent through a filter, the output
PSD will be of the form \(\sigma_w^2|H(e^{j2\pi f/f_s})|^2\), where
\(\sigma_w^2\) is the variance of the noise driving the filter. You
may choose to overlay a plot of

Widgets Examples

Stereo Gain Sliders

In [17]:

L_gain = widgets.FloatSlider(description = 'L Gain',
 continuous_update = True,
 value = 1.0,
 min = 0.0,
 max = 2.0,
 step = 0.01,
 orientation = 'vertical')
R_gain = widgets.FloatSlider(description = 'R Gain',
 continuous_update = True,
 value = 1.0,
 min = 0.0,
 max = 2.0,
 step = 0.01,
 orientation = 'vertical')

#widgets.HBox([L_gain, R_gain])

In [18]:

L and Right Gain Sliders
def callback(in_data, frame_count, time_info, status):
 global DSP_IO, L_gain, R_gain
 DSP_IO.DSP_callback_tic()
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 # separate left and right data
 x_left,x_right = DSP_IO.get_LR(in_data_nda.astype(float32))
 #***
 # DSP operations here
 y_left = x_left*L_gain.value
 y_right = x_right*R_gain.value

 #***
 # Pack left and right data together
 y = DSP_IO.pack_LR(y_left,y_right)
 # Typically more DSP code here
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples_stereo(y_left,y_right)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 # Convert ndarray back to bytes
 #return (in_data_nda.tobytes(), pyaudio.paContinue)
 return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback,0,1,fs=48000,Tcapture=0)
DSP_IO.interactive_stream(0,2)
widgets.HBox([L_gain, R_gain])

In [19]:

Image("audio_files/left_right_gain.png", width="65%")

Out[19]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_44_0.png]

Cross Panning

In [20]:

panning = widgets.FloatSlider(description = 'Panning (%)',
 continuous_update = True, # Continuous updates
 value = 50.0,
 min = 0.0,
 max = 100.0,
 step = 0.1,
 orientation = 'horizontal')
#display(panning)

In [21]:

Panning
def callback(in_data, frame_count, time_info, status):
 global DSP_IO, panning
 DSP_IO.DSP_callback_tic()
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 # separate left and right data
 x_left,x_right = DSP_IO.get_LR(in_data_nda.astype(float32))
 #***
 # DSP operations here
 y_left = (100-panning.value)/100*x_left \
 + panning.value/100*x_right
 y_right = panning.value/100*x_left \
 + (100-panning.value)/100*x_right

 #***
 # Pack left and right data together
 y = DSP_IO.pack_LR(y_left,y_right)
 # Typically more DSP code here
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples_stereo(y_left,y_right)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 # Convert ndarray back to bytes
 #return (in_data_nda.tobytes(), pyaudio.paContinue)
 return y.tobytes(), pah.pyaudio.paContinue

FRAMES = 512
Create streaming object
DSP_IO = pah.DSP_io_stream(callback,0,1,
 fs=48000,
 frame_length = FRAMES,
 Tcapture=0)

interactive_stream runs in a thread
#so widget can be used
DSP_IO.interactive_stream(0,2)

display panning widget
display(panning)

In [22]:

Image("audio_files/cross_panning.png", width='55%')

Out[22]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_49_0.png]

Three Band Equalizer

Here we consider a three-band equalizer operating on a music loop. Each
peaking filter has system function in the \(z\)-domain defined by

\[H_{pk}(z) = C_\text{pk}\frac{1 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}\]

where the filter coefficients are given by

\[\begin{split}\begin{align}
C_\text{pk} &= \frac{1+k_q\mu}{1+k_q}\\
 k_q &= \frac{4}{1+\mu} \tan\left(\frac{2\pi f_c/f_s}{2Q}\right) \\
 b_1 &= \frac{-2\cos(2\pi f_c/f_s)}{1+k_q\mu} \\
 b_2 &= \frac{1-k_q\mu}{1+k_q\mu} \\
 a_1 &= \frac{-2\cos(2\pi f_c/f_s)}{1+k_q} \\
 a_2 &= \frac{1 - k_q}{1+k_q}
\end{align}\end{split}\]

where

\[\mu = 10^{G_\text{dB}/20},\ \ Q \in [2, 10]\]

and and \(f_c\) is the center frequency in Hz relative to sampling
rate \(f_s\) in Hz, and \(G_\text{dB}\) is the peaking filter
gain in dB. Conveniently, the function peaking is available in the
module sk_dsp_comm.sigsys.

In [23]:

band1 = widgets.FloatSlider(description = '100 Hz',
 continuous_update = True, # Continuous updates
 value = 20.0,
 min = -20.0,
 max = 20.0,
 step = 1,
 orientation = 'vertical')
band2 = widgets.FloatSlider(description = '1000 Hz',
 continuous_update = True, # Continuous updates
 value = 10.0,
 min = -20.0,
 max = 20.0,
 step = 1,
 orientation = 'vertical')
band3 = widgets.FloatSlider(description = '8000 Hz',
 continuous_update = True, # Continuous updates
 value = -10.0,
 min = -20.0,
 max = 20.0,
 step = 1,
 orientation = 'vertical')

Gain = widgets.FloatSlider(description = 'Gain',
 continuous_update = True,
 value = 0.2,
 min = 0.0,
 max = 2.0,
 step = 0.01,
 orientation = 'vertical')

#widgets.HBox([Gain,band1,band2,band3])

In [24]:

b_b1,a_b1 = ss.peaking(band1.value,100,Q=3.5,fs=48000)
zi_b1 = signal.lfiltic(b_b1,a_b1,[0])
b_b2,a_b2 = ss.peaking(band2.value,1000,Q=3.5,fs=48000)
zi_b2 = signal.lfiltic(b_b2,a_b2,[0])
b_b3,a_b3 = ss.peaking(band3.value,8000,Q=3.5,fs=48000)
zi_b3 = signal.lfiltic(b_b3,a_b3,[0])
b_12,a_12 = ss.cascade_filters(b_b1,a_b1,b_b2,a_b2)
b_123,a_123 = ss.cascade_filters(b_12,a_12,b_b3,a_b3)
f = logspace(log10(50),log10(10000),100)
w,H_123 = signal.freqz(b_123,a_123,2*pi*f/48000)
semilogx(f,20*log10(abs(H_123)))
ylim([-20,20])
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
grid();

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_52_0.svg]

In [25]:

define a pass through, y = x, callback
def callback(in_data, frame_count, time_info, status):
 global DSP_IO, zi_b1,zi_b2,zi_b3, x
 global Gain, band1, band2, band3
 DSP_IO.DSP_callback_tic()
 # convert byte data to ndarray
 in_data_nda = np.frombuffer(in_data, dtype=np.int16)
 #***
 # DSP operations here
 # Here we apply a linear filter to the input
 #x = in_data_nda.astype(float32)
 x = Gain.value*20000*x_loop.get_samples(frame_count)
 # DSP code here
 b_b1,a_b1 = ss.peaking(band1.value,100,Q=3.5,fs=48000)
 z1, zi_b1 = signal.lfilter(b_b1,a_b1,x,zi=zi_b1)
 b_b2,a_b2 = ss.peaking(band2.value,1000,Q=3.5,fs=48000)
 z2, zi_b2 = signal.lfilter(b_b2,a_b2,z1,zi=zi_b2)
 b_b3,a_b3 = ss.peaking(band3.value,8000,Q=3.5,fs=48000)
 y, zi_b3 = signal.lfilter(b_b3,a_b3,z2,zi=zi_b3)
 #***
 # Save data for later analysis
 # accumulate a new frame of samples
 DSP_IO.DSP_capture_add_samples(y)
 #***
 # Convert from float back to int16
 y = y.astype(int16)
 DSP_IO.DSP_callback_toc()
 # Convert ndarray back to bytes
 #return (in_data_nda.tobytes(), pyaudio.paContinue)
 return y.tobytes(), pah.pyaudio.paContinue

fs, x_wav2 = ss.from_wav('audio_files/Music_Test.wav')
x_wav = (x_wav2[:,0] + x_wav2[:,1])/2
x_loop = pah.loop_audio(x_wav)
DSP_IO = pah.DSP_io_stream(callback,0,1,fs=44100,Tcapture=0)
DSP_IO.interactive_stream(0,1)
widgets.HBox([Gain,band1,band2,band3])

In [26]:

Image("audio_files/three_band_widgets.png", width="55%")

Out[26]:

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_55_0.png]

In [27]:

f_AD,Mag_AD = loadtxt('audio_files/ThreeBand_Peak_100_p20_1k_p10_8k_m10_fs_48k.csv',
 delimiter=',',skiprows=6,unpack=True)
semilogx(f_AD,Mag_AD+55)
semilogx(f,20*log10(abs(H_123)))
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
legend((r'AD2 Noise Measured',r'Design Theory'))
title(r'Three Band Equalizer: $f_{center} = [100,1000,800]$, $Q = 3.5$')
ylim([-20,20])
xlim([50,10000])
grid();

[image: ../_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_56_0.svg]

In [28]:

coeff2header

Digital Filter Coefficient Conversion to C Header Files

Copyright (c) March 2017, Mark Wickert
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.

	
sk_dsp_comm.coeff2header.CA_code_header(fname_out, Nca)

	Write 1023 bit CA (Gold) Code Header Files

Mark Wickert February 2015

	
sk_dsp_comm.coeff2header.FIR_fix_header(fname_out, h)

	Write FIR Fixed-Point Filter Header Files

Mark Wickert February 2015

	
sk_dsp_comm.coeff2header.FIR_header(fname_out, h)

	Write FIR Filter Header Files

Mark Wickert February 2015

	
sk_dsp_comm.coeff2header.IIR_sos_header(fname_out, SOS_mat)

	Write IIR SOS Header Files
File format is compatible with CMSIS-DSP IIR
Directform II Filter Functions

Mark Wickert March 2015-October 2016

	
sk_dsp_comm.coeff2header.freqz_resp_list(b, a=array([1]), mode='dB', fs=1.0, Npts=1024, fsize=(6, 4))

	A method for displaying digital filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freq_resp(self,mode = ‘dB’,Npts = 1024)

A method for displaying the filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freqz_resp(b,a=[1],mode = ‘dB’,Npts = 1024,fsize=(6,4))

	Parameters

	
	bndarray of numerator coefficients

	

	andarray of denominator coefficents

	

	modedisplay mode: ‘dB’ magnitude, ‘phase’ in radians, or

	‘groupdelay_s’ in samples and ‘groupdelay_t’ in sec,
all versus frequency in Hz

	Nptsnumber of points to plot; default is 1024

	

	fsizefigure size; defult is (6,4) inches

	

	Mark Wickert, January 2015

	

digitalcom

Digital Communications Function Module

Copyright (c) March 2017, Mark Wickert
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.

	
sk_dsp_comm.digitalcom.AWGN_chan(x_bits, EBN0_dB)

	
	Parameters

	
	x_bitsserial bit stream of 0/1 values.

	

	EBNO_dBEnergy per bit to noise power density ratio in dB of the serial bit stream sent through the AWGN channel. Frequently we equate EBN0 to SNR in link budget calculations

	

	Returns

	
	y_bitsReceived serial bit stream following hard decisions. This bit will have bit errors. To check the estimated bit error probability use BPSK_BEP() or simply

	

	>> Pe_est = sum(xor(x_bits,y_bits))/length(x_bits);

	

	Mark Wickert, March 2015

	

	
sk_dsp_comm.digitalcom.BPSK_BEP(tx_data, rx_data, Ncorr=1024, Ntransient=0)

	Count bit errors between a transmitted and received BPSK signal.
Time delay between streams is detected as well as ambiquity resolution
due to carrier phase lock offsets of \(k*\pi\), k=0,1.
The ndarray tx_data is Tx +/-1 symbols as real numbers I.
The ndarray rx_data is Rx +/-1 symbols as real numbers I.
Note: Ncorr needs to be even

	
sk_dsp_comm.digitalcom.BPSK_tx(N_bits, Ns, ach_fc=2.0, ach_lvl_dB=-100, pulse='rect', alpha=0.25, M=6)

	Generates biphase shift keyed (BPSK) transmitter with adjacent channel interference.

Generates three BPSK signals with rectangular or square root raised cosine (SRC)
pulse shaping of duration N_bits and Ns samples per bit. The desired signal is
centered on f = 0, which the adjacent channel signals to the left and right
are also generated at dB level relative to the desired signal. Used in the
digital communications Case Study supplement.

	Parameters

	
	N_bitsthe number of bits to simulate

	

	Nsthe number of samples per bit

	

	ach_fcthe frequency offset of the adjacent channel signals (default 2.0)

	

	ach_lvl_dBthe level of the adjacent channel signals in dB (default -100)

	

	pulsethe pulse shape ‘rect’ or ‘src’

	

	alphasquare root raised cosine pulse shape factor (default = 0.25)

	

	Msquare root raised cosine pulse truncation factor (default = 6)

	

	Returns

	
	xndarray of the composite signal x0 + ach_lvl*(x1p + x1m)

	

	bthe transmit pulse shape

	

	data0the data bits used to form the desired signal; used for error checking

	

Examples

>>> x,b,data0 = BPSK_tx(1000,10,'src')

	
sk_dsp_comm.digitalcom.GMSK_bb(N_bits, Ns, MSK=0, BT=0.35)

	MSK/GMSK Complex Baseband Modulation
x,data = gmsk(N_bits, Ns, BT = 0.35, MSK = 0)

	Parameters

	
	N_bitsnumber of symbols processed

	

	Nsthe number of samples per bit

	

	MSK0 for no shaping which is standard MSK, MSK <> 0 –> GMSK is generated.

	

	BTpremodulation Bb*T product which sets the bandwidth of the Gaussian lowpass filter

	

	Mark Wickert Python version November 2014

	

	
sk_dsp_comm.digitalcom.MPSK_bb(N_symb, Ns, M, pulse='rect', alpha=0.25, MM=6)

	Generate a complex baseband MPSK signal with pulse shaping.

	Parameters

	
	N_symbnumber of MPSK symbols to produce

	

	Nsthe number of samples per bit,

	

	MMPSK modulation order, e.g., 4, 8, 16, …

	

	pulse_type‘rect’ , ‘rc’, ‘src’ (default ‘rect’)

	

	alphaexcess bandwidth factor(default 0.25)

	

	MMsingle sided pulse duration (default = 6)

	

	Returns

	
	xndarray of the MPSK signal values

	

	bndarray of the pulse shape

	

	datandarray of the underlying data bits

	

Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine),
‘src’ (root raised cosine). The actual pulse length is 2*M+1 samples.
This function is used by BPSK_tx in the Case Study article.

Examples

>>> from sk_dsp_comm import digitalcom as dc
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt
>>> x,b,data = dc.MPSK_bb(500,10,8,'src',0.35)
>>> # Matched filter received signal x
>>> y = signal.lfilter(b,1,x)
>>> plt.plot(y.real[12*10:],y.imag[12*10:])
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> # Sample once per symbol
>>> plt.plot(y.real[12*10::10],y.imag[12*10::10],'r.')
>>> plt.show()

(Source code)

[image: _images/digitalcom-1.png]

	
sk_dsp_comm.digitalcom.OFDM_rx(x, Nf, N, Np=0, cp=False, Ncp=0, alpha=0.95, ht=None)

	
	Parameters

	
	xReceived complex baseband OFDM signal

	

	NfNumber of filled carriers, must be even and Nf < N

	

	NTotal number of carriers; generally a power 2, e.g., 64, 1024, etc

	

	NpPeriod of pilot code blocks; 0 <=> no pilots; -1 <=> use the ht impulse response input to equalize the OFDM symbols; note equalization still requires Ncp > 0 to work on a delay spread channel.

	

	cpFalse/True <=> if False assume no CP is present

	

	NcpThe length of the cyclic prefix

	

	alphaThe filter forgetting factor in the channel estimator. Typically alpha is 0.9 to 0.99.

	

	ntInput the known theoretical channel impulse response

	

	Returns

	
	z_outRecovered complex baseband QAM symbols as a serial stream; as appropriate channel estimation has been applied.

	

	Hchannel estimate (in the frequency domain at each subcarrier)

	

See also

OFDM_tx

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> from scipy import signal
>>> from numpy import array
>>> hc = array([1.0, 0.1, -0.05, 0.15, 0.2, 0.05]) # impulse response spanning five symbols
>>> # Quick example using the above channel with no cyclic prefix
>>> x1,b1,IQ_data1 = dc.QAM_bb(50000,1,'16qam')
>>> x_out = dc.OFDM_tx(IQ_data1,32,64,0,True,0)
>>> c_out = signal.lfilter(hc,1,x_out) # Apply channel distortion
>>> r_out = dc.cpx_AWGN(c_out,100,64/32) # Es/N0 = 100 dB
>>> z_out,H = dc.OFDM_rx(r_out,32,64,-1,True,0,alpha=0.95,ht=hc)
>>> plt.plot(z_out[200:].real,z_out[200:].imag,'.')
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()

(Source code)

[image: _images/digitalcom-2_00_00.png]

Another example with noise using a 10 symbol cyclic prefix and channel estimation:

>>> x_out = dc.OFDM_tx(IQ_data1,32,64,100,True,10)
>>> c_out = signal.lfilter(hc,1,x_out) # Apply channel distortion
>>> r_out = dc.cpx_AWGN(c_out,25,64/32) # Es/N0 = 25 dB
>>> z_out,H = dc.OFDM_rx(r_out,32,64,100,True,10,alpha=0.95,ht=hc);
>>> plt.figure() # if channel estimation is turned on need this
>>> plt.plot(z_out[-2000:].real,z_out[-2000:].imag,'.') # allow settling time
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()

[image: _images/digitalcom-2_01_00.png]

[image: _images/digitalcom-2_01_01.png]

	
sk_dsp_comm.digitalcom.OFDM_tx(IQ_data, Nf, N, Np=0, cp=False, Ncp=0)

	
	Parameters

	
	IQ_data+/-1, +/-3, etc complex QAM symbol sample inputs

	

	Nfnumber of filled carriers, must be even and Nf < N

	

	Ntotal number of carriers; generally a power 2, e.g., 64, 1024, etc

	

	NpPeriod of pilot code blocks; 0 <=> no pilots

	

	cpFalse/True <=> bypass cp insertion entirely if False

	

	Ncpthe length of the cyclic prefix

	

	Returns

	
	x_outcomplex baseband OFDM waveform output after P/S and CP insertion

	

See also

OFDM_rx

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> x1,b1,IQ_data1 = dc.QAM_bb(50000,1,'16qam')
>>> x_out = dc.OFDM_tx(IQ_data1,32,64)
>>> plt.psd(x_out,2**10,1);
>>> plt.xlabel(r'Normalized Frequency ($\omega/(2\pi)=f/f_s$)')
>>> plt.ylim([-40,0])
>>> plt.xlim([-.5,.5])
>>> plt.show()

(Source code)

[image: _images/digitalcom-3.png]

	
sk_dsp_comm.digitalcom.PCM_decode(x_bits, N_bits)

	
	x_bits = serial bit stream of 0/1 values. The length of

	x_bits must be a multiple of N_bits

	N_bits = bit precision of PCM samples

	xhat = decoded PCM signal samples

Mark Wickert, March 2015

	
sk_dsp_comm.digitalcom.PCM_encode(x, N_bits)

	
x = signal samples to be PCM encoded

N_bits = bit precision of PCM samples
x_bits = encoded serial bit stream of 0/1 values. MSB first.
///
Mark Wickert, Mark 2015

	
sk_dsp_comm.digitalcom.QAM_SEP(tx_data, rx_data, mod_type, Ncorr = 1024, Ntransient = 0)

	Count symbol errors between a transmitted and received QAM signal.
The received symbols are assumed to be soft values on a unit square.
Time delay between streams is detected.
The ndarray tx_data is Tx complex symbols.
The ndarray rx_data is Rx complex symbols.
Note: Ncorr needs to be even

	
sk_dsp_comm.digitalcom.QAM_bb(N_symb, Ns, mod_type='16qam', pulse='rect', alpha=0.35)

	QAM_BB_TX: A complex baseband transmitter
x,b,tx_data = QAM_bb(K,Ns,M)

	//////////// Inputs //

	
	N_symb = the number of symbols to process

	Ns = number of samples per symbol

	mod_type = modulation type: qpsk, 16qam, 64qam, or 256qam

	
	alpha = squareroot raised codine pulse shape bandwidth factor.

	
For DOCSIS alpha = 0.12 to 0.18. In general alpha can
range over 0 < alpha < 1.

SRC = pulse shape: 0-> rect, 1-> SRC

	//////////// Outputs ///

	
x = complex baseband digital modulation
b = transmitter shaping filter, rectangle or SRC

	tx_data = xI+1j*xQ = inphase symbol sequence +

	1j*quadrature symbol sequence

Mark Wickert November 2014

	
sk_dsp_comm.digitalcom.QPSK_BEP(tx_data, rx_data, Ncorr=1024, Ntransient=0)

	Count bit errors between a transmitted and received QPSK signal.
Time delay between streams is detected as well as ambiquity resolution
due to carrier phase lock offsets of \(k*\frac{\pi}{4}\), k=0,1,2,3.
The ndarray sdata is Tx +/-1 symbols as complex numbers I + j*Q.
The ndarray data is Rx +/-1 symbols as complex numbers I + j*Q.
Note: Ncorr needs to be even

	
sk_dsp_comm.digitalcom.QPSK_bb(N_symb, Ns, lfsr_len=5, pulse='src', alpha=0.25, M=6)

	

	
sk_dsp_comm.digitalcom.QPSK_rx(fc, N_symb, Rs, EsN0=100, fs=125, lfsr_len=10, phase=0, pulse='src')

	This function generates

	
sk_dsp_comm.digitalcom.QPSK_tx(fc, N_symb, Rs, fs=125, lfsr_len=10, pulse='src')

	

	
sk_dsp_comm.digitalcom.Q_fctn(x)

	Gaussian Q-function

	
sk_dsp_comm.digitalcom.RZ_bits(N_bits, Ns, pulse='rect', alpha=0.25, M=6)

	Generate return-to-zero (RZ) data bits with pulse shaping.

A baseband digital data signal using +/-1 amplitude signal values
and including pulse shaping.

	Parameters

	
	N_bitsnumber of RZ {0,1} data bits to produce

	

	Nsthe number of samples per bit,

	

	pulse_type‘rect’ , ‘rc’, ‘src’ (default ‘rect’)

	

	alphaexcess bandwidth factor(default 0.25)

	

	Msingle sided pulse duration (default = 6)

	

	Returns

	
	xndarray of the RZ signal values

	

	bndarray of the pulse shape

	

	datandarray of the underlying data bits

	

Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine),
‘src’ (root raised cosine). The actual pulse length is 2*M+1 samples.
This function is used by BPSK_tx in the Case Study article.

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.digitalcom import RZ_bits
>>> x,b,data = RZ_bits(100,10)
>>> t = arange(len(x))
>>> plt.plot(t,x)
>>> plt.ylim([-0.01, 1.01])
>>> plt.show()

(Source code)

[image: _images/digitalcom-4.png]

	
sk_dsp_comm.digitalcom.bit_errors(tx_data, rx_data, Ncorr=1024, Ntransient=0)

	Count bit errors between a transmitted and received BPSK signal.
Time delay between streams is detected as well as ambiquity resolution
due to carrier phase lock offsets of \(k*\pi\), k=0,1.
The ndarray tx_data is Tx 0/1 bits as real numbers I.
The ndarray rx_data is Rx 0/1 bits as real numbers I.
Note: Ncorr needs to be even

	
sk_dsp_comm.digitalcom.chan_est_equalize(z, Np, alpha, Ht=None)

	This is a helper function for OFDM_rx() to unpack pilot blocks from
from the entire set of received OFDM symbols (the Nf of N filled
carriers only); then estimate the channel array H recursively,
and finally apply H_hat to Y, i.e., X_hat = Y/H_hat
carrier-by-carrier. Note if Np = -1, then H_hat = H, the true
channel.

	Parameters

	
	zInput N_OFDM x Nf 2D array containing pilot blocks and OFDM data symbols.

	

	NpThe pilot block period; if -1 use the known channel impulse response input to ht.

	

	alphaThe forgetting factor used to recursively estimate H_hat

	

	HtThe theoretical channel frquency response to allow ideal equalization provided Ncp is adequate.

	

	Returns

	
	zz_outThe input z with the pilot blocks removed and one-tap equalization applied to each of the Nf carriers.

	

	HThe channel estimate in the frequency domain; an array of length Nf; will return Ht if provided as an input.

	

Examples

>>> from sk_dsp_comm.digitalcom import chan_est_equalize
>>> zz_out,H = chan_est_eq(z,Nf,Np,alpha,Ht=None)

	
sk_dsp_comm.digitalcom.eye_plot(x, L, S=0)

	Eye pattern plot of a baseband digital communications waveform.

The signal must be real, but can be multivalued in terms of the underlying
modulation scheme. Used for BPSK eye plots in the Case Study article.

	Parameters

	
	xndarray of the real input data vector/array

	

	Ldisplay length in samples (usually two symbols)

	

	Sstart index

	

	Returns

	
	NoneA plot window opens containing the eye plot

	

Notes

Increase S to eliminate filter transients.

Examples

1000 bits at 10 samples per bit with ‘rc’ shaping.

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> x,b, data = dc.NRZ_bits(1000,10,'rc')
>>> dc.eye_plot(x,20,60)
>>> plt.show()

(Source code)

[image: _images/digitalcom-5.png]

	
sk_dsp_comm.digitalcom.farrow_resample(x, fs_old, fs_new)

	
	Parameters

	
	xInput list representing a signal vector needing resampling.

	

	fs_oldStarting/old sampling frequency.

	

	fs_newNew sampling frequency.

	

	Returns

	
	yList representing the signal vector resampled at the new frequency.

	

Notes

A cubic interpolator using a Farrow structure is used resample the
input data at a new sampling rate that may be an irrational multiple of
the input sampling rate.

Time alignment can be found for a integer value M, found with the following:

\[f_{s,out} = f_{s,in} (M - 1) / M\]

The filter coefficients used here and a more comprehensive listing can be
found in H. Meyr, M. Moeneclaey, & S. Fechtel, “Digital Communication
Receivers,” Wiley, 1998, Chapter 9, pp. 521-523.

Another good paper on variable interpolators is: L. Erup, F. Gardner, &
R. Harris, “Interpolation in Digital Modems–Part II: Implementation
and Performance,” IEEE Comm. Trans., June 1993, pp. 998-1008.

A founding paper on the subject of interpolators is: C. W. Farrow, “A
Continuously variable Digital Delay Element,” Proceedings of the IEEE
Intern. Symp. on Circuits Syst., pp. 2641-2645, June 1988.

Mark Wickert April 2003, recoded to Python November 2013

Examples

The following example uses a QPSK signal with rc pulse shaping, and time alignment at M = 15.

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm import digitalcom as dc
>>> Ns = 8
>>> Rs = 1.
>>> fsin = Ns*Rs
>>> Tsin = 1 / fsin
>>> N = 200
>>> ts = 1
>>> x, b, data = dc.MPSK_bb(N+12, Ns, 4, 'rc')
>>> x = x[12*Ns:]
>>> xxI = x.real
>>> M = 15
>>> fsout = fsin * (M-1) / M
>>> Tsout = 1. / fsout
>>> xI = dc.farrow_resample(xxI, fsin, fsin)
>>> tx = arange(0, len(xI)) / fsin
>>> yI = dc.farrow_resample(xxI, fsin, fsout)
>>> ty = arange(0, len(yI)) / fsout
>>> plt.plot(tx - Tsin, xI)
>>> plt.plot(tx[ts::Ns] - Tsin, xI[ts::Ns], 'r.')
>>> plt.plot(ty[ts::Ns] - Tsout, yI[ts::Ns], 'g.')
>>> plt.title(r'Impact of Asynchronous Sampling')
>>> plt.ylabel(r'Real Signal Amplitude')
>>> plt.xlabel(r'Symbol Rate Normalized Time')
>>> plt.xlim([0, 20])
>>> plt.grid()
>>> plt.show()

(Source code)

[image: _images/digitalcom-6.png]

	
sk_dsp_comm.digitalcom.mux_pilot_blocks(IQ_data, Np)

	
	Parameters

	
	IQ_dataa 2D array of input QAM symbols with the columns

	representing the NF carrier frequencies and each
row the QAM symbols used to form an OFDM symbol

	Npthe period of the pilot blocks; e.g., a pilot block is

	inserted every Np OFDM symbols (Np-1 OFDM data symbols
of width Nf are inserted in between the pilot blocks.

	Returns

	
	IQ_datapIQ_data with pilot blocks inserted

	

See also

OFDM_tx

Notes

A helper function called by OFDM_tx() that inserts pilot block for use
in channel estimation when a delay spread channel is present.

	
sk_dsp_comm.digitalcom.my_psd(x, NFFT=1024, Fs=1)

	A local version of NumPy’s PSD function that returns the plot arrays.

A mlab.psd wrapper function that returns two ndarrays;
makes no attempt to auto plot anything.

	Parameters

	
	xndarray input signal

	

	NFFTa power of two, e.g., 2**10 = 1024

	

	Fsthe sampling rate in Hz

	

	Returns

	
	Pxndarray of the power spectrum estimate

	

	fndarray of frequency values

	

Notes

This function makes it easier to overlay spectrum plots because
you have better control over the axis scaling than when using psd()
in the autoscale mode.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> from numpy import log10
>>> x,b, data = dc.NRZ_bits(10000,10)
>>> Px,f = dc.my_psd(x,2**10,10)
>>> plt.plot(f, 10*log10(Px))
>>> plt.show()

(Source code)

[image: _images/digitalcom-7.png]

	
sk_dsp_comm.digitalcom.rc_imp(Ns, alpha, M=6)

	A truncated raised cosine pulse used in digital communications.

The pulse shaping factor \(0 < \alpha < 1\) is required as well as the
truncation factor M which sets the pulse duration to be \(2*M*T_{symbol}\).

	Parameters

	
	Nsnumber of samples per symbol

	

	alphaexcess bandwidth factor on (0, 1), e.g., 0.35

	

	Mequals RC one-sided symbol truncation factor

	

	Returns

	
	bndarray containing the pulse shape

	

See also

sqrt_rc_imp

Notes

The pulse shape b is typically used as the FIR filter coefficients
when forming a pulse shaped digital communications waveform.

Examples

Ten samples per symbol and \(\alpha = 0.35\).

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.digitalcom import rc_imp
>>> from numpy import arange
>>> b = rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()

(Source code)

[image: _images/digitalcom-8.png]

	
sk_dsp_comm.digitalcom.scatter(x, Ns, start)

	Sample a baseband digital communications waveform at the symbol spacing.

	Parameters

	
	xndarray of the input digital comm signal

	

	Nsnumber of samples per symbol (bit)

	

	startthe array index to start the sampling

	

	Returns

	
	xIndarray of the real part of x following sampling

	

	xQndarray of the imaginary part of x following sampling

	

Notes

Normally the signal is complex, so the scatter plot contains
clusters at point in the complex plane. For a binary signal
such as BPSK, the point centers are nominally +/-1 on the real
axis. Start is used to eliminate transients from the FIR
pulse shaping filters from appearing in the scatter plot.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> x,b, data = dc.NRZ_bits(1000,10,'rc')

Add some noise so points are now scattered about +/-1.

>>> y = dc.cpx_AWGN(x,20,10)
>>> yI,yQ = dc.scatter(y,10,60)
>>> plt.plot(yI,yQ,'.')
>>> plt.grid()
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.show()

(Source code)

[image: _images/digitalcom-9.png]

	
sk_dsp_comm.digitalcom.sqrt_rc_imp(Ns, alpha, M=6)

	A truncated square root raised cosine pulse used in digital communications.

The pulse shaping factor \(0 < \alpha < 1\) is required as well as the
truncation factor M which sets the pulse duration to be \(2*M*T_{symbol}\).

	Parameters

	
	Nsnumber of samples per symbol

	

	alphaexcess bandwidth factor on (0, 1), e.g., 0.35

	

	Mequals RC one-sided symbol truncation factor

	

	Returns

	
	bndarray containing the pulse shape

	

Notes

The pulse shape b is typically used as the FIR filter coefficients
when forming a pulse shaped digital communications waveform. When
square root raised cosine (SRC) pulse is used to generate Tx signals and
at the receiver used as a matched filter (receiver FIR filter), the
received signal is now raised cosine shaped, thus having zero
intersymbol interference and the optimum removal of additive white
noise if present at the receiver input.

Examples

Ten samples per symbol and \(\alpha = 0.35\).

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.digitalcom import sqrt_rc_imp
>>> b = sqrt_rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()

(Source code)

[image: _images/digitalcom-10.png]

	
sk_dsp_comm.digitalcom.strips(x, Nx, fig_size=(6, 4))

	Plots the contents of real ndarray x as a vertical stacking of
strips, each of length Nx. The default figure size is (6,4) inches.
The yaxis tick labels are the starting index of each strip. The red
dashed lines correspond to zero amplitude in each strip.

strips(x,Nx,my_figsize=(6,4))

Mark Wickert April 2014

	
sk_dsp_comm.digitalcom.time_delay(x, D, N=4)

	A time varying time delay which takes advantage of the Farrow structure
for cubic interpolation:

y = time_delay(x,D,N = 3)

Note that D is an array of the same length as the input signal x. This
allows you to make the delay a function of time. If you want a constant
delay just use D*zeros(len(x)). The minimum delay allowable is one sample
or D = 1.0. This is due to the causal system nature of the Farrow
structure.

A founding paper on the subject of interpolators is: C. W. Farrow, “A
Continuously variable Digital Delay Element,” Proceedings of the IEEE
Intern. Symp. on Circuits Syst., pp. 2641-2645, June 1988.

Mark Wickert, February 2014

	
sk_dsp_comm.digitalcom.tobin(data, width)

	

	
sk_dsp_comm.digitalcom.xcorr(x1, x2, Nlags)

	r12, k = xcorr(x1,x2,Nlags), r12 and k are ndarray’s
Compute the energy normalized cross correlation between the sequences
x1 and x2. If x1 = x2 the cross correlation is the autocorrelation.
The number of lags sets how many lags to return centered about zero

fec_conv

A Convolutional Encoding and Decoding

Copyright (c) March 2017, Mark Wickert
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.

	
sk_dsp_comm.fec_conv.binary(num, length=8)

	Format an integer to binary without the leading ‘0b’

	
sk_dsp_comm.fec_conv.conv_Pb_bound(R, dfree, Ck, SNRdB, hard_soft, M=2)

	Coded bit error probabilty

Convolution coding bit error probability upper bound
according to Ziemer & Peterson 7-16, p. 507

Mark Wickert November 2014

	Parameters

	
	R: Code rate

	

	dfree: Free distance of the code

	

	Ck: Weight coefficient

	

	SNRdB: Signal to noise ratio in dB

	

	hard_soft: 0 hard, 1 soft, 2 uncoded

	

	M: M-ary

	

Notes

The code rate R is given by \(R_{s} = \frac{k}{n}\).

Examples

>>> import numpy as np
>>> from sk_dsp_comm import fec_conv as fec
>>> import matplotlib.pyplot as plt
>>> SNRdB = np.arange(2,12,.1)
>>> Pb = fec.conv_Pb_bound(1./2,10,[36, 0, 211, 0, 1404, 0, 11633],SNRdB,2)
>>> Pb_1_2 = fec.conv_Pb_bound(1./2,10,[36, 0, 211, 0, 1404, 0, 11633],SNRdB,1)
>>> Pb_3_4 = fec.conv_Pb_bound(3./4,4,[164, 0, 5200, 0, 151211, 0, 3988108],SNRdB,1)
>>> plt.semilogy(SNRdB,Pb)
>>> plt.semilogy(SNRdB,Pb_1_2)
>>> plt.semilogy(SNRdB,Pb_3_4)
>>> plt.axis([2,12,1e-7,1e0])
>>> plt.xlabel(r'E_b/N_0 (dB)')
>>> plt.ylabel(r'Symbol Error Probability')
>>> plt.legend(('Uncoded BPSK','R=1/2, K=7, Soft','R=3/4 (punc), K=7, Soft'),loc='best')
>>> plt.grid();
>>> plt.show()

(Source code)

[image: _images/fec_conv-1.png]

	
class sk_dsp_comm.fec_conv.fec_conv(G=('111', '101'), Depth=10)

	Class responsible for creating rate 1/2 convolutional code objects, and
then encoding and decoding the user code set in polynomials of G. Key
methods provided include conv_encoder(), viterbi_decoder(), puncture(),
depuncture(), trellis_plot(), and traceback_plot().

	Parameters

	
	G: A tuple of two binary strings corresponding to the encoder polynomials

	

	Depth: The decision depth employed by the Viterbi decoder method

	

Examples

>>> from sk_dsp_comm import fec_conv
>>> cc1 = fec_conv.fec_conv(('101', '111'), Depth=10) # decision depth is 10

Methods

	bm_calc(ref_code_bits, rec_code_bits, …)

	distance = bm_calc(ref_code_bits, rec_code_bits, metric_type) Branch metrics calculation

	conv_encoder(input, state)

	output, state = conv_encoder(input,state) We assume a rate 1/2 encoder.

	depuncture(soft_bits[, puncture_pattern, …])

	Apply de-puncturing to the soft bits coming from the channel.

	puncture(code_bits[, puncture_pattern])

	Apply puncturing to the serial bits produced by convolutionally encoding.

	traceback_plot([fsize])

	Plots a path of the possible last 4 states.

	trellis_plot([fsize])

	Plots a trellis diagram of the possible state transitions.

	viterbi_decoder(x[, metric_type])

	A method which performs Viterbi decoding of noisy bit stream, taking as input soft bit values centered on +/-1 and returning hard decision 0/1 bits.

	
bm_calc(ref_code_bits, rec_code_bits, metric_type)

	distance = bm_calc(ref_code_bits, rec_code_bits, metric_type)
Branch metrics calculation

Mark Wickert February 2014

	
conv_encoder(input, state)

	output, state = conv_encoder(input,state)
We assume a rate 1/2 encoder.
Polys G1 and G2 are entered as binary strings, e.g,
G1 = ‘111’ and G2 = ‘101’ for K = 3
G1 = ‘1011011’ and G2 = ‘1111001’ for K = 7
Input state as a binary string of length K-1, e.g., ‘00’ or ‘0000000’
e.g., state = ‘00’ for K = 3
e.g., state = ‘000000’ for K = 7
Mark Wickert February 2014

	
depuncture(soft_bits, puncture_pattern=('110', '101'), erase_value=3.5)

	Apply de-puncturing to the soft bits coming from the channel. Erasure bits
are inserted to return the soft bit values back to a form that can be
Viterbi decoded.

	Parameters

	
	soft_bits –

	puncture_pattern –

	erase_value –

	Returns

	

Examples

This example uses the following puncture matrix:

\[\begin{split}\begin{align*}
 \mathbf{A} = \begin{bmatrix}
 1 & 1 & 0 \\
 1 & 0 & 1
 \end{bmatrix}
\end{align*}\end{split}\]

The upper row operates on the outputs for the \(G_{1}\) polynomial and the lower row operates on the outputs of
the \(G_{2}\) polynomial.

>>> import numpy as np
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> cc = fec_conv(('101','111'))
>>> x = np.array([0, 0, 1, 1, 1, 0, 0, 0, 0, 0])
>>> state = '00'
>>> y, state = cc.conv_encoder(x, state)
>>> yp = cc.puncture(y, ('110','101'))
>>> cc.depuncture(yp, ('110', '101'), 1)
array([0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1., 0., 1., 1., 0., 1., 1., 0.]

	
puncture(code_bits, puncture_pattern=('110', '101'))

	Apply puncturing to the serial bits produced by convolutionally
encoding.

	Parameters

	
	code_bits –

	puncture_pattern –

	Returns

	

Examples

This example uses the following puncture matrix:

\[\begin{split}\begin{align*}
 \mathbf{A} = \begin{bmatrix}
 1 & 1 & 0 \\
 1 & 0 & 1
 \end{bmatrix}
\end{align*}\end{split}\]

The upper row operates on the outputs for the \(G_{1}\) polynomial and the lower row operates on the outputs of
the \(G_{2}\) polynomial.

>>> import numpy as np
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> cc = fec_conv(('101','111'))
>>> x = np.array([0, 0, 1, 1, 1, 0, 0, 0, 0, 0])
>>> state = '00'
>>> y, state = cc.conv_encoder(x, state)
>>> cc.puncture(y, ('110','101'))
array([0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 0.])

	
traceback_plot(fsize=(6, 4))

	Plots a path of the possible last 4 states.

	Parameters

	
	fsizePlot size for matplotlib.

	

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> from sk_dsp_comm import digitalcom as dc
>>> import numpy as np
>>> cc = fec_conv()
>>> x = np.random.randint(0,2,100)
>>> state = '00'
>>> y,state = cc.conv_encoder(x,state)
>>> # Add channel noise to bits translated to +1/-1
>>> yn = dc.cpx_AWGN(2*y-1,5,1) # SNR = 5 dB
>>> # Translate noisy +1/-1 bits to soft values on [0,7]
>>> yn = (yn.real+1)/2*7
>>> z = cc.viterbi_decoder(yn)
>>> cc.traceback_plot()
>>> plt.show()

(Source code)

[image: _images/fec_conv-2.png]

	
trellis_plot(fsize=(6, 4))

	Plots a trellis diagram of the possible state transitions.

	Parameters

	
	fsizePlot size for matplotlib.

	

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> cc = fec_conv()
>>> cc.trellis_plot()
>>> plt.show()

(Source code)

[image: _images/fec_conv-3.png]

	
viterbi_decoder(x, metric_type='three_bit')

	A method which performs Viterbi decoding of noisy bit stream,
taking as input soft bit values centered on +/-1 and returning
hard decision 0/1 bits.

	Parameters

	
	x: Received noisy bit values centered on +/-1 at one sample per bit

	

	metric_type: Hard or soft decision decoding type. At present only 3-bit soft-decision is implemented.

	

	Returns

	
	y: Decoded 0/1 bit stream

	

Examples

Take from fall 2016 final project

	
sk_dsp_comm.fec_conv.hard_Pk(k, R, SNR)

	Calculates Pk as found in Ziemer & Peterson eq. 7-12, p.505

Mark Wickert November 2014

	
sk_dsp_comm.fec_conv.soft_Pk(k, R, SNR)

	Calculates Pk as found in Ziemer & Peterson eq. 7-13, p.505

Mark Wickert November 2014

	
class sk_dsp_comm.fec_conv.trellis_branches(Ns)

	A structure to hold the trellis states, bits, and input values
for both ‘1’ and ‘0’ transitions.
Ns is the number of states = \(2^{(K-1)}\).

	
class sk_dsp_comm.fec_conv.trellis_nodes(Ns)

	A structure to hold the trellis from nodes and to nodes.
Ns is the number of states = \(2^{(K-1)}\).

	
class sk_dsp_comm.fec_conv.trellis_paths(Ns, D)

	A structure to hold the trellis paths in terms of traceback_states,
cumulative_metrics, and traceback_bits. A full decision depth history
of all this infomation is not essential, but does allow the graphical
depiction created by the method traceback_plot().
Ns is the number of states = \(2^{(K-1)}\) and D is the decision depth.
As a rule, D should be about 5 times K.

fir_design_helper

Basic Linear Phase Digital Filter Design Helper

Copyright (c) March 2017, Mark Wickert
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.

	
sk_dsp_comm.fir_design_helper.bandpass_order(f_stop1, f_pass1, f_pass2, f_stop2, dpass_dB, dstop_dB, fsamp=1)

	Optimal FIR (equal ripple) Bandpass Order Determination

Text reference: Ifeachor, Digital Signal Processing a Practical Approach,
second edition, Prentice Hall, 2002.
Journal paper reference: F. Mintzer & B. Liu, Practical Design Rules for Optimum
FIR Bandpass Digital Filters, IEEE Transactions on Acoustics and Speech, pp.
204-206, April,1979.

	
sk_dsp_comm.fir_design_helper.bandstop_order(f_stop1, f_pass1, f_pass2, f_stop2, dpass_dB, dstop_dB, fsamp=1)

	Optimal FIR (equal ripple) Bandstop Order Determination

Text reference: Ifeachor, Digital Signal Processing a Practical Approach,
second edition, Prentice Hall, 2002.
Journal paper reference: F. Mintzer & B. Liu, Practical Design Rules for Optimum
FIR Bandpass Digital Filters, IEEE Transactions on Acoustics and Speech, pp.
204-206, April,1979.

	
sk_dsp_comm.fir_design_helper.fir_remez_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_pass, d_stop, fs=1.0, N_bump=5)

	Design an FIR bandpass filter using remez with order
determination. The filter order is determined based on
f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the
desired passband ripple d_pass dB and stopband attenuation
d_stop dB all relative to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

	
sk_dsp_comm.fir_design_helper.fir_remez_bsf(f_pass1, f_stop1, f_stop2, f_pass2, d_pass, d_stop, fs=1.0, N_bump=5)

	Design an FIR bandstop filter using remez with order
determination. The filter order is determined based on
f_pass1 Hz, f_stop1 Hz, f_stop2 Hz, f_pass2 Hz, and the
desired passband ripple d_pass dB and stopband attenuation
d_stop dB all relative to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

	
sk_dsp_comm.fir_design_helper.fir_remez_hpf(f_stop, f_pass, d_pass, d_stop, fs=1.0, N_bump=5)

	Design an FIR highpass filter using remez with order
determination. The filter order is determined based on
f_pass Hz, fstop Hz, and the desired passband ripple
d_pass dB and stopband attenuation d_stop dB all
relative to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

	
sk_dsp_comm.fir_design_helper.fir_remez_lpf(f_pass, f_stop, d_pass, d_stop, fs=1.0, N_bump=5)

	Design an FIR lowpass filter using remez with order
determination. The filter order is determined based on
f_pass Hz, fstop Hz, and the desired passband ripple
d_pass dB and stopband attenuation d_stop dB all
relative to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

	
sk_dsp_comm.fir_design_helper.firwin_bpf(N_taps, f1, f2, fs=1.0, pass_zero=False)

	Design a windowed FIR bandpass filter in terms of passband
critical frequencies f1 < f2 in Hz relative to sampling rate
fs in Hz. The number of taps must be provided.

Mark Wickert October 2016

	
sk_dsp_comm.fir_design_helper.firwin_kaiser_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs=1.0, N_bump=0)

	Design an FIR bandpass filter using the sinc() kernel and
a Kaiser window. The filter order is determined based on
f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the
desired stopband attenuation d_stop in dB for both stopbands,
all relative to a sampling rate of fs Hz.
Note: the passband ripple cannot be set independent of the
stopband attenuation.

Mark Wickert October 2016

	
sk_dsp_comm.fir_design_helper.firwin_kaiser_bsf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs=1.0, N_bump=0)

	Design an FIR bandstop filter using the sinc() kernel and
a Kaiser window. The filter order is determined based on
f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the
desired stopband attenuation d_stop in dB for both stopbands,
all relative to a sampling rate of fs Hz.
Note: The passband ripple cannot be set independent of the
stopband attenuation.
Note: The filter order is forced to be even (odd number of taps)
so there is a center tap that can be used to form 1 - H_BPF.

Mark Wickert October 2016

	
sk_dsp_comm.fir_design_helper.firwin_kaiser_hpf(f_stop, f_pass, d_stop, fs=1.0, N_bump=0)

	Design an FIR highpass filter using the sinc() kernel and
a Kaiser window. The filter order is determined based on
f_pass Hz, f_stop Hz, and the desired stopband attenuation
d_stop in dB, all relative to a sampling rate of fs Hz.
Note: the passband ripple cannot be set independent of the
stopband attenuation.

Mark Wickert October 2016

	
sk_dsp_comm.fir_design_helper.firwin_kaiser_lpf(f_pass, f_stop, d_stop, fs=1.0, N_bump=0)

	Design an FIR lowpass filter using the sinc() kernel and
a Kaiser window. The filter order is determined based on
f_pass Hz, f_stop Hz, and the desired stopband attenuation
d_stop in dB, all relative to a sampling rate of fs Hz.
Note: the passband ripple cannot be set independent of the
stopband attenuation.

Mark Wickert October 2016

	
sk_dsp_comm.fir_design_helper.firwin_lpf(N_taps, fc, fs=1.0)

	Design a windowed FIR lowpass filter in terms of passband
critical frequencies f1 < f2 in Hz relative to sampling rate
fs in Hz. The number of taps must be provided.

Mark Wickert October 2016

	
sk_dsp_comm.fir_design_helper.freqz_resp_list(b, a=array([1]), mode='dB', fs=1.0, Npts=1024, fsize=(6, 4))

	A method for displaying digital filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freq_resp(self,mode = ‘dB’,Npts = 1024)

A method for displaying the filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freqz_resp(b,a=[1],mode = ‘dB’,Npts = 1024,fsize=(6,4))

b = ndarray of numerator coefficients
a = ndarray of denominator coefficents

	mode = display mode: ‘dB’ magnitude, ‘phase’ in radians, or

	‘groupdelay_s’ in samples and ‘groupdelay_t’ in sec,
all versus frequency in Hz

Npts = number of points to plot; default is 1024

fsize = figure size; defult is (6,4) inches

Mark Wickert, January 2015

	
sk_dsp_comm.fir_design_helper.lowpass_order(f_pass, f_stop, dpass_dB, dstop_dB, fsamp=1)

	Optimal FIR (equal ripple) Lowpass Order Determination

Text reference: Ifeachor, Digital Signal Processing a Practical Approach,
second edition, Prentice Hall, 2002.
Journal paper reference: Herriman et al., Practical Design Rules for Optimum
Finite Imulse Response Digitl Filters, Bell Syst. Tech. J., vol 52, pp.
769-799, July-Aug., 1973.IEEE, 1973.

iir_design_helper

Basic IIR Bilinear Transform-Based Digital Filter Design Helper

Copyright (c) March 2017, Mark Wickert
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.

	
sk_dsp_comm.iir_design_helper.IIR_bpf(f_stop1, f_pass1, f_pass2, f_stop2, Ripple_pass, Atten_stop, fs=1.0, ftype='butter')

	Design an IIR bandpass filter using scipy.signal.iirdesign.
The filter order is determined based on
f_pass Hz, f_stop Hz, and the desired stopband attenuation
d_stop in dB, all relative to a sampling rate of fs Hz.

	Parameters

	
	f_stop1ndarray of the numerator coefficients

	

	f_passndarray of the denominator coefficients

	

	Ripple_pass :

	

	Atten_stop :

	

	fssampling rate in Hz

	

	ftypeAnalog prototype from ‘butter’ ‘cheby1’, ‘cheby2’,

	‘ellip’, and ‘bessel’

	Returns

	
	bndarray of the numerator coefficients

	

	andarray of the denominator coefficients

	

	sos2D ndarray of second-order section coefficients

	

Examples

>>> fs = 48000
>>> f_pass = 8000
>>> f_stop = 5000
>>> b_but,a_but,sos_but = IIR_hpf(f_stop,f_pass,0.5,60,fs,'butter')
>>> b_cheb1,a_cheb1,sos_cheb1 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby1')
>>> b_cheb2,a_cheb2,sos_cheb2 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby2')
>>> b_elli,a_elli,sos_elli = IIR_hpf(f_stop,f_pass,0.5,60,fs,'ellip')

Mark Wickert October 2016

	
sk_dsp_comm.iir_design_helper.IIR_bsf(f_pass1, f_stop1, f_stop2, f_pass2, Ripple_pass, Atten_stop, fs=1.0, ftype='butter')

	Design an IIR bandstop filter using scipy.signal.iirdesign.
The filter order is determined based on
f_pass Hz, f_stop Hz, and the desired stopband attenuation
d_stop in dB, all relative to a sampling rate of fs Hz.

Mark Wickert October 2016

	
sk_dsp_comm.iir_design_helper.IIR_hpf(f_stop, f_pass, Ripple_pass, Atten_stop, fs=1.0, ftype='butter')

	Design an IIR highpass filter using scipy.signal.iirdesign.
The filter order is determined based on
f_pass Hz, f_stop Hz, and the desired stopband attenuation
d_stop in dB, all relative to a sampling rate of fs Hz.

	Parameters

	
	f_stop :

	

	f_pass :

	

	Ripple_pass :

	

	Atten_stop :

	

	fssampling rate in Hz

	

	ftypeAnalog prototype from ‘butter’ ‘cheby1’, ‘cheby2’,

	‘ellip’, and ‘bessel’

	Returns

	
	bndarray of the numerator coefficients

	

	andarray of the denominator coefficients

	

	sos2D ndarray of second-order section coefficients

	

Examples

>>> fs = 48000
>>> f_pass = 8000
>>> f_stop = 5000
>>> b_but,a_but,sos_but = IIR_hpf(f_stop,f_pass,0.5,60,fs,'butter')
>>> b_cheb1,a_cheb1,sos_cheb1 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby1')
>>> b_cheb2,a_cheb2,sos_cheb2 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby2')
>>> b_elli,a_elli,sos_elli = IIR_hpf(f_stop,f_pass,0.5,60,fs,'ellip')

Mark Wickert October 2016

	
sk_dsp_comm.iir_design_helper.IIR_lpf(f_pass, f_stop, Ripple_pass, Atten_stop, fs=1.0, ftype='butter')

	Design an IIR lowpass filter using scipy.signal.iirdesign.
The filter order is determined based on
f_pass Hz, f_stop Hz, and the desired stopband attenuation
d_stop in dB, all relative to a sampling rate of fs Hz.

	Parameters

	
	f_passPassband critical frequency in Hz

	

	f_stopStopband critical frequency in Hz

	

	Ripple_passFilter gain in dB at f_pass

	

	Atten_stopFilter attenuation in dB at f_stop

	

	fsSampling rate in Hz

	

	ftypeAnalog prototype from ‘butter’ ‘cheby1’, ‘cheby2’,

	‘ellip’, and ‘bessel’

	Returns

	
	bndarray of the numerator coefficients

	

	andarray of the denominator coefficients

	

	sos2D ndarray of second-order section coefficients

	

Notes

Additionally a text string telling the user the filter order is
written to the console, e.g., IIR cheby1 order = 8.

Examples

>>> fs = 48000
>>> f_pass = 5000
>>> f_stop = 8000
>>> b_but,a_but,sos_but = IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter')
>>> b_cheb1,a_cheb1,sos_cheb1 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1')
>>> b_cheb2,a_cheb2,sos_cheb2 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2')
>>> b_elli,a_elli,sos_elli = IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip')

Mark Wickert October 2016

	
sk_dsp_comm.iir_design_helper.freqz_cas(sos, w)

	Cascade frequency response

Mark Wickert October 2016

	
sk_dsp_comm.iir_design_helper.freqz_resp_cas_list(sos, mode='dB', fs=1.0, Npts=1024, fsize=(6, 4))

	A method for displaying cascade digital filter form frequency response
magnitude, phase, and group delay. A plot is produced using matplotlib

freq_resp(self,mode = ‘dB’,Npts = 1024)

A method for displaying the filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freqz_resp(b,a=[1],mode = ‘dB’,Npts = 1024,fsize=(6,4))

b = ndarray of numerator coefficients
a = ndarray of denominator coefficents

	mode = display mode: ‘dB’ magnitude, ‘phase’ in radians, or

	‘groupdelay_s’ in samples and ‘groupdelay_t’ in sec,
all versus frequency in Hz

Npts = number of points to plot; default is 1024

fsize = figure size; defult is (6,4) inches

Mark Wickert, January 2015

	
sk_dsp_comm.iir_design_helper.freqz_resp_list(b, a=array([1]), mode='dB', fs=1.0, Npts=1024, fsize=(6, 4))

	A method for displaying digital filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freq_resp(self,mode = ‘dB’,Npts = 1024)

A method for displaying the filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freqz_resp(b,a=[1],mode = ‘dB’,Npts = 1024,fsize=(6,4))

b = ndarray of numerator coefficients
a = ndarray of denominator coefficents

	mode = display mode: ‘dB’ magnitude, ‘phase’ in radians, or

	‘groupdelay_s’ in samples and ‘groupdelay_t’ in sec,
all versus frequency in Hz

Npts = number of points to plot; default is 1024

fsize = figure size; defult is (6,4) inches

Mark Wickert, January 2015

	
sk_dsp_comm.iir_design_helper.sos_cascade(sos1, sos2)

	Mark Wickert October 2016

	
sk_dsp_comm.iir_design_helper.sos_zplane(sos, auto_scale=True, size=2, tol=0.001)

	Create an z-plane pole-zero plot.

Create an z-plane pole-zero plot using the numerator
and denominator z-domain system function coefficient
ndarrays b and a respectively. Assume descending powers of z.

	Parameters

	
	sosndarray of the sos coefficients

	

	auto_scalebool (default True)

	

	sizeplot radius maximum when scale = False

	

	Returns

	
	(M,N)tuple of zero and pole counts + plot window

	

Notes

This function tries to identify repeated poles and zeros and will
place the multiplicity number above and to the right of the pole or zero.
The difficulty is setting the tolerance for this detection. Currently it
is set at 1e-3 via the function signal.unique_roots.

Examples

>>> # Here the plot is generated using auto_scale
>>> sos_zplane(sos)
>>> # Here the plot is generated using manual scaling
>>> sos_zplane(sos,False,1.5)

	
sk_dsp_comm.iir_design_helper.unique_cpx_roots(rlist, tol=0.001)

	The average of the root values is used when multiplicity
is greater than one.

Mark Wickert October 2016

multirate_helper

	
sk_dsp_comm.multirate_helper.freqz_resp(b, a=[1], mode='dB', fs=1.0, Npts=1024, fsize=(6, 4))

	A method for displaying digital filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freq_resp(self,mode = ‘dB’,Npts = 1024)

A method for displaying the filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freqz_resp(b,a=[1],mode = ‘dB’,Npts = 1024,fsize=(6,4))

b = ndarray of numerator coefficients
a = ndarray of denominator coefficents

	mode = display mode: ‘dB’ magnitude, ‘phase’ in radians, or

	‘groupdelay_s’ in samples and ‘groupdelay_t’ in sec,
all versus frequency in Hz

Npts = number of points to plot; defult is 1024

fsize = figure size; defult is (6,4) inches

Mark Wickert, January 2015

	
class sk_dsp_comm.multirate_helper.multirate_FIR(b)

	A simple class for encapsulating FIR filtering, or FIR upsample/
filter, or FIR filter/downsample operations used in modeling a comm
system. Objects of this class will hold the required filter
coefficients once an object is instantiated. Frequency response
and the pole zero plot can also be plotted using supplied class methods.

Mark Wickert March 2017

Methods

	dn(x[, M_change])

	Downsample and filter the signal

	filter(x)

	Filter the signal

	up(x[, L_change])

	Upsample and filter the signal

	zplane([auto_scale, size, detect_mult, tol])

	Plot the poles and zeros of the FIR filter in the z-plane

	freq_resp

	

	
dn(x, M_change=12)

	Downsample and filter the signal

	
filter(x)

	Filter the signal

	
freq_resp(mode='dB', fs=8000, ylim=[-100, 2])

	

	
up(x, L_change=12)

	Upsample and filter the signal

	
zplane(auto_scale=True, size=2, detect_mult=True, tol=0.001)

	Plot the poles and zeros of the FIR filter in the z-plane

	
class sk_dsp_comm.multirate_helper.multirate_IIR(sos)

	A simple class for encapsulating IIR filtering, or IIR upsample/
filter, or IIR filter/downsample operations used in modeling a comm
system. Objects of this class will hold the required filter
coefficients once an object is instantiated. Frequency response
and the pole zero plot can also be plotted using supplied class methods.
For added robustness to floating point quantization all filtering
is done using the scipy.signal cascade of second-order sections filter
method y = sosfilter(sos,x).

Mark Wickert March 2017

Methods

	dn(x[, M_change])

	Downsample and filter the signal

	filter(x)

	Filter the signal using second-order sections

	freq_resp([mode, fs, ylim])

	Frequency response plot

	up(x[, L_change])

	Upsample and filter the signal

	zplane([auto_scale, size, detect_mult, tol])

	Plot the poles and zeros of the FIR filter in the z-plane

	
dn(x, M_change=12)

	Downsample and filter the signal

	
filter(x)

	Filter the signal using second-order sections

	
freq_resp(mode='dB', fs=8000, ylim=[-100, 2])

	Frequency response plot

	
up(x, L_change=12)

	Upsample and filter the signal

	
zplane(auto_scale=True, size=2, detect_mult=True, tol=0.001)

	Plot the poles and zeros of the FIR filter in the z-plane

	
class sk_dsp_comm.multirate_helper.rate_change(M_change=12, fcutoff=0.9, N_filt_order=8, ftype='butter')

	A simple class for encapsulating the upsample/filter and
filter/downsample operations used in modeling a comm
system. Objects of this class will hold the required filter
coefficients once an object is instantiated.

Mark Wickert February 2015

Methods

	dn(x)

	Downsample and filter the signal

	up(x)

	Upsample and filter the signal

	
dn(x)

	Downsample and filter the signal

	
up(x)

	Upsample and filter the signal

optfir

pyaudio_helper

Support functions and classes for using PyAudio for real-time DSP

Copyright (c) September 2017, Mark Wickert, Andrew Smit
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.

	
class sk_dsp_comm.pyaudio_helper.DSP_io_stream(stream_callback, in_idx=1, out_idx=4, frame_length=1024, fs=44100, Tcapture=0, sleep_time=0.1)

	Real-time DSP one channel input/output audio streaming

Use PyAudio to explore real-time audio DSP using Python

Mark Wickert, Andrew Smit September 2017

Methods

	DSP_callback_tic()

	Add new tic time to the DSP_tic list.

	DSP_callback_toc()

	Add new toc time to the DSP_toc list.

	DSP_capture_add_samples(new_data)

	Append new samples to the data_capture array and increment the sample counter If length reaches Tcapture, then the newest samples will be kept.

	DSP_capture_add_samples_stereo(…)

	Append new samples to the data_capture_left array and the data_capture_right array and increment the sample counter.

	cb_active_plot(start_ms, stop_ms[, line_color])

	Plot timing information of time spent in the callback.

	get_LR(in_data)

	Splits incoming packed stereo data into separate left and right channels and returns an array of left samples and an array of right samples

	in_out_check()

	Checks the input and output to see if they are valid

	interactive_stream([Tsec, numChan])

	Stream audio with start and stop radio buttons

	pack_LR(left_out, right_out)

	Packs separate left and right channel data into one array to output and returns the output.

	stop()

	Call to stop streaming

	stream([Tsec, numChan])

	Stream audio using callback

	stream_stats()

	Display basic statistics of callback execution: ideal period between callbacks, average measured period between callbacks, and average time spent in the callback.

	thread_stream([Tsec, numChan])

	Stream audio in a thread using callback.

	interaction

	

	
DSP_callback_tic()

	Add new tic time to the DSP_tic list. Will not be called if
Tcapture = 0.

	
DSP_callback_toc()

	Add new toc time to the DSP_toc list. Will not be called if
Tcapture = 0.

	
DSP_capture_add_samples(new_data)

	Append new samples to the data_capture array and increment the sample counter
If length reaches Tcapture, then the newest samples will be kept. If Tcapture = 0
then new values are not appended to the data_capture array.

	
DSP_capture_add_samples_stereo(new_data_left, new_data_right)

	Append new samples to the data_capture_left array and the data_capture_right
array and increment the sample counter. If length reaches Tcapture, then the
newest samples will be kept. If Tcapture = 0 then new values are not appended
to the data_capture array.

	
cb_active_plot(start_ms, stop_ms, line_color='b')

	Plot timing information of time spent in the callback. This is similar
to what a logic analyzer provides when probing an interrupt.

cb_active_plot(start_ms,stop_ms,line_color=’b’)

	
get_LR(in_data)

	Splits incoming packed stereo data into separate left and right channels
and returns an array of left samples and an array of right samples

	Parameters

	
	in_datainput data from the streaming object in the callback function.

	

	Returns

	
	left_inarray of incoming left channel samples

	

	right_inarray of incoming right channel samples

	

	
in_out_check()

	Checks the input and output to see if they are valid

	
interactive_stream(Tsec=2, numChan=1)

	Stream audio with start and stop radio buttons

Interactive stream is designed for streaming audio through this object using
a callback function. This stream is threaded, so it can be used with ipywidgets.
Click on the “Start Streaming” button to start streaming and click on “Stop Streaming”
button to stop streaming.

	Parameters

	
	Tsecstream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite

	

	mode. When in infinite mode, the “Stop Streaming” radio button or Tsec.stop() can be

	

	used to stop the stream.

	

	numChannumber of channels. Use 1 for mono and 2 for stereo.

	

	
pack_LR(left_out, right_out)

	Packs separate left and right channel data into one array to output
and returns the output.

	Parameters

	
	left_outleft channel array of samples going to output

	

	right_outright channel array of samples going to output

	

	Returns

	
	outpacked left and right channel array of samples

	

	
stop()

	Call to stop streaming

	
stream(Tsec=2, numChan=1)

	Stream audio using callback

	Parameters

	
	Tsecstream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite

	

	mode. When in infinite mode, Tsec.stop() can be used to stop the stream.

	

	numChannumber of channels. Use 1 for mono and 2 for stereo.

	

	
stream_stats()

	Display basic statistics of callback execution: ideal period
between callbacks, average measured period between callbacks,
and average time spent in the callback.

	
thread_stream(Tsec=2, numChan=1)

	Stream audio in a thread using callback. The stream is threaded, so widgets can be
used simultaneously during stream.

	Parameters

	
	Tsecstream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite

	

	mode. When in infinite mode, Tsec.stop() can be used to stop the stream.

	

	numChannumber of channels. Use 1 for mono and 2 for stereo.

	

	
sk_dsp_comm.pyaudio_helper.available_devices()

	Display available input and output audio devices along with their
port indices.

	Returns

	Dictionary whose keys are the device index, the number of inputs and outputs, and their names.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class sk_dsp_comm.pyaudio_helper.loop_audio(x, start_offset=0)

	Loop signal ndarray during playback.
Optionally start_offset samples into the array.
Array may be 1D (one channel) or 2D (two channel, Nsamps by 2)

Mark Wickert July 2017

Methods

	get_samples

	

	
get_samples(frame_count)

	

rtlsdr_helper

Support functions for the RTL-SDR using pyrtlsdr

Copyright (c) July 2017, Mark Wickert
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.

	
sk_dsp_comm.rtlsdr_helper.complex2wav(filename, rate, x)

	Save a complex signal vector to a wav file for compact binary
storage of 16-bit signal samples. The wav left and right channels
are used to save real (I) and imaginary (Q) values. The rate is
just a convent way of documenting the original signal sample rate.

complex2wav(filename,rate,x)

Mark Wickert April 2014

	
sk_dsp_comm.rtlsdr_helper.discrim(x)

	function disdata = discrim(x)
where x is an angle modulated signal in complex baseband form.

Mark Wickert

	
sk_dsp_comm.rtlsdr_helper.fsk_BEP(rx_data, m, flip)

	Estimate the BEP of the data bits recovered
by the RTL-SDR Based FSK Receiver.

The reference m-sequence generated in Python
was found to produce sequences running in the opposite
direction relative to the m-sequences generated by the
mbed. To allow error detection the reference m-sequence
is flipped.

Mark Wickert April 2014

	
sk_dsp_comm.rtlsdr_helper.mono_FM(x, fs=2400000.0, file_name='test.wav')

	Decimate complex baseband input by 10
Design 1st decimation lowpass filter (f_c = 200 KHz)

	
sk_dsp_comm.rtlsdr_helper.pilot_PLL(xr, fq, fs, loop_type, Bn, zeta)

	Mark Wickert, April 2014

	
sk_dsp_comm.rtlsdr_helper.sccs_bit_sync(y, Ns)

	
Symbol synchronization algorithm using SCCS

y = baseband NRZ data waveform

Ns = nominal number of samples per symbol

Reworked from ECE 5675 Project
Translated from m-code version
Mark Wickert April 2014

	
sk_dsp_comm.rtlsdr_helper.stereo_FM(x, fs=2400000.0, file_name='test.wav')

	Stereo demod from complex baseband at sampling rate fs.
Assume fs is 2400 ksps

Mark Wickert July 2017

	
sk_dsp_comm.rtlsdr_helper.wav2complex(filename)

	Return a complex signal vector from a wav file that was used to store
the real (I) and imaginary (Q) values of a complex signal ndarray.
The rate is included as means of recalling the original signal sample
rate.

fs,x = wav2complex(filename)

Mark Wickert April 2014

sigsys

Signals and Systems Function Module

Copyright (c) March 2017, Mark Wickert
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.

	
sk_dsp_comm.sigsys.BPSK_tx(N_bits, Ns, ach_fc=2.0, ach_lvl_dB=-100, pulse='rect', alpha=0.25, M=6)

	Generates biphase shift keyed (BPSK) transmitter with adjacent channel interference.

Generates three BPSK signals with rectangular or square root raised cosine (SRC)
pulse shaping of duration N_bits and Ns samples per bit. The desired signal is
centered on f = 0, which the adjacent channel signals to the left and right
are also generated at dB level relative to the desired signal. Used in the
digital communications Case Study supplement.

	Parameters

	
	N_bitsthe number of bits to simulate

	

	Nsthe number of samples per bit

	

	ach_fcthe frequency offset of the adjacent channel signals (default 2.0)

	

	ach_lvl_dBthe level of the adjacent channel signals in dB (default -100)

	

	pulse :the pulse shape ‘rect’ or ‘src’

	

	alphasquare root raised cosine pulse shape factor (default = 0.25)

	

	Msquare root raised cosine pulse truncation factor (default = 6)

	

	Returns

	
	xndarray of the composite signal x0 + ach_lvl*(x1p + x1m)

	

	bthe transmit pulse shape

	

	data0the data bits used to form the desired signal; used for error checking

	

Examples

>>> x,b,data0 = BPSK_tx(1000,10,pulse='src')

	
sk_dsp_comm.sigsys.CIC(M, K)

	A functional form implementation of a cascade of integrator comb (CIC) filters.

	Parameters

	
	MEffective number of taps per section (typically the decimation factor).

	

	KThe number of CIC sections cascaded (larger K gives the filter a wider image rejection bandwidth).

	

	Returns

	
	bFIR filter coefficients for a simple direct form implementation using the filter() function.

	

Notes

Commonly used in multirate signal processing digital down-converters and digital up-converters. A true CIC filter
requires no multiplies, only add and subtract operations. The functional form created here is a simple FIR requiring
real coefficient multiplies via filter().

Mark Wickert July 2013

	
sk_dsp_comm.sigsys.NRZ_bits(N_bits, Ns, pulse='rect', alpha=0.25, M=6)

	Generate non-return-to-zero (NRZ) data bits with pulse shaping.

A baseband digital data signal using +/-1 amplitude signal values
and including pulse shaping.

	Parameters

	
	N_bitsnumber of NRZ +/-1 data bits to produce

	

	Nsthe number of samples per bit,

	

	pulse_type‘rect’ , ‘rc’, ‘src’ (default ‘rect’)

	

	alphaexcess bandwidth factor(default 0.25)

	

	Msingle sided pulse duration (default = 6)

	

	Returns

	
	xndarray of the NRZ signal values

	

	bndarray of the pulse shape

	

	datandarray of the underlying data bits

	

Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine),
‘src’ (root raised cosine). The actual pulse length is 2*M+1 samples.
This function is used by BPSK_tx in the Case Study article.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.sigsys import NRZ_bits
>>> from numpy import arange
>>> x,b,data = NRZ_bits(100, 10)
>>> t = arange(len(x))
>>> plt.plot(t, x)
>>> plt.ylim([-1.01, 1.01])
>>> plt.show()

(Source code)

[image: _images/sigsys-1.png]

	
sk_dsp_comm.sigsys.NRZ_bits2(data, Ns, pulse='rect', alpha=0.25, M=6)

	Generate non-return-to-zero (NRZ) data bits with pulse shaping with user data

A baseband digital data signal using +/-1 amplitude signal values
and including pulse shaping. The data sequence is user supplied.

	Parameters

	
	datandarray of the data bits as 0/1 values

	

	Nsthe number of samples per bit,

	

	pulse_type‘rect’ , ‘rc’, ‘src’ (default ‘rect’)

	

	alphaexcess bandwidth factor(default 0.25)

	

	Msingle sided pulse duration (default = 6)

	

	Returns

	
	xndarray of the NRZ signal values

	

	bndarray of the pulse shape

	

Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine),
‘src’ (root raised cosine). The actual pulse length is 2*M+1 samples.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.sigsys import NRZ_bits2
>>> from sk_dsp_comm.sigsys import m_seq
>>> from numpy import arange
>>> x,b = NRZ_bits2(m_seq(5),10)
>>> t = arange(len(x))
>>> plt.ylim([-1.01, 1.01])
>>> plt.plot(t,x)

(Source code)

[image: _images/sigsys-2.png]

	
sk_dsp_comm.sigsys.OA_filter(x, h, N, mode=0)

	Overlap and add transform domain FIR filtering.

This function implements the classical overlap and add method of
transform domain filtering using a length P FIR filter.

	Parameters

	
	xinput signal to be filtered as an ndarray

	

	hFIR filter coefficients as an ndarray of length P

	

	NFFT size > P, typically a power of two

	

	mode0 or 1, when 1 returns a diagnostic matrix

	

	Returns

	
	ythe filtered output as an ndarray

	

	y_matan ndarray whose rows are the individual overlap outputs.

	

Notes

y_mat is used for diagnostics and to gain understanding of the algorithm.

Examples

>>> import numpy as np
>>> from sk_dsp_comm.sigsys import OA_filter
>>> n = np.arange(0,100)
>>> x = np.cos(2*pi*0.05*n)
>>> b = np.ones(10)
>>> y = OA_filter(x,h,N)
>>> # set mode = 1
>>> y, y_mat = OA_filter(x,h,N,1)

	
sk_dsp_comm.sigsys.OS_filter(x, h, N, mode=0)

	Overlap and save transform domain FIR filtering.

This function implements the classical overlap and save method of
transform domain filtering using a length P FIR filter.

	Parameters

	
	xinput signal to be filtered as an ndarray

	

	hFIR filter coefficients as an ndarray of length P

	

	NFFT size > P, typically a power of two

	

	mode0 or 1, when 1 returns a diagnostic matrix

	

	Returns

	
	ythe filtered output as an ndarray

	

	y_matan ndarray whose rows are the individual overlap outputs.

	

Notes

y_mat is used for diagnostics and to gain understanding of the algorithm.

Examples

>>> n = arange(0,100)
>>> x = cos(2*pi*0.05*n)
>>> b = ones(10)
>>> y = OS_filter(x,h,N)
>>> # set mode = 1
>>> y, y_mat = OS_filter(x,h,N,1)

	
sk_dsp_comm.sigsys.PN_gen(N_bits, m=5)

	Maximal length sequence signal generator.

Generates a sequence 0/1 bits of N_bit duration. The bits themselves
are obtained from an m-sequence of length m. Available m-sequence
(PN generators) include m = 2,3,…,12, & 16.

	Parameters

	
	N_bitsthe number of bits to generate

	

	mthe number of shift registers. 2,3, .., 12, & 16

	

	Returns

	
	PNndarray of the generator output over N_bits

	

Notes

The sequence is periodic having period 2**m - 1 (2^m - 1).

Examples

>>> # A 15 bit period signal nover 50 bits
>>> PN = PN_gen(50,4)

	
sk_dsp_comm.sigsys.am_rx(x192)

	AM envelope detector receiver for the Chapter 17 Case Study

The receiver bandpass filter is not included in this function.

	Parameters

	
	x192ndarray of the AM signal at sampling rate 192 ksps

	

	Returns

	
	m_rx8ndarray of the demodulated message at 8 ksps

	

	t8ndarray of the time axis at 8 ksps

	

	m_rx192ndarray of the demodulated output at 192 ksps

	

	x_edet192ndarray of the envelope detector output at 192 ksps

	

Notes

The bandpass filter needed at the receiver front-end can be designed
using b_bpf,a_bpf = am_rx_BPF().

Examples

>>> import numpy as np
>>> n = np.arange(0,1000)
>>> # 1 kHz message signal
>>> m = np.cos(2*np.pi*1000/8000.*n)
>>> m_rx8,t8,m_rx192,x_edet192 = am_rx(x192)

	
sk_dsp_comm.sigsys.am_rx_BPF(N_order=7, ripple_dB=1, B=10000.0, fs=192000.0)

	Bandpass filter design for the AM receiver Case Study of Chapter 17.

Design a 7th-order Chebyshev type 1 bandpass filter to remove/reduce
adjacent channel intereference at the envelope detector input.

	Parameters

	
	N_orderthe filter order (default = 7)

	

	ripple_dBthe passband ripple in dB (default = 1)

	

	Bthe RF bandwidth (default = 10e3)

	

	fsthe sampling frequency

	

	Returns

	
	b_bpfndarray of the numerator filter coefficients

	

	a_bpfndarray of the denominator filter coefficients

	

Examples

>>> from scipy import signal
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import sk_dsp_comm.sigsys as ss
>>> # Use the default values
>>> b_bpf,a_bpf = ss.am_rx_BPF()

Pole-zero plot of the filter.

>>> ss.zplane(b_bpf,a_bpf)
>>> plt.show()

(Source code)

[image: _images/sigsys-3_00_00.png]

Plot of the frequency response.

>>> f = np.arange(0,192/2.,.1)
>>> w, Hbpf = signal.freqz(b_bpf,a_bpf,2*np.pi*f/192)
>>> plt.plot(f*10,20*np.log10(abs(Hbpf)))
>>> plt.axis([0,1920/2.,-80,10])
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (kHz)")
>>> plt.show()

[image: _images/sigsys-3_01_00.png]

	
sk_dsp_comm.sigsys.am_tx(m, a_mod, fc=75000.0)

	AM transmitter for Case Study of Chapter 17.

Assume input is sampled at 8 Ksps and upsampling
by 24 is performed to arrive at fs_out = 192 Ksps.

	Parameters

	
	mndarray of the input message signal

	

	a_modAM modulation index, between 0 and 1

	

	fcthe carrier frequency in Hz

	

	Returns

	
	x192ndarray of the upsampled by 24 and modulated carrier

	

	t192ndarray of the upsampled by 24 time axis

	

	m24ndarray of the upsampled by 24 message signal

	

Notes

The sampling rate of the input signal is assumed to be 8 kHz.

Examples

>>> n = arange(0,1000)
>>> # 1 kHz message signal
>>> m = cos(2*pi*1000/8000.*n)
>>> x192, t192 = am_tx(m,0.8,fc=75e3)

	
sk_dsp_comm.sigsys.biquad2(w_num, r_num, w_den, r_den)

	A biquadratic filter in terms of conjugate pole and zero pairs.

	Parameters

	
	w_numzero frequency (angle) in rad/sample

	

	r_numconjugate zeros radius

	

	w_denpole frequency (angle) in rad/sample

	

	r_denconjugate poles radius; less than 1 for stability

	

	Returns

	
	bndarray of numerator coefficients

	

	andarray of denominator coefficients

	

Examples

>>> b,a = biquad2(pi/4., 1, pi/4., 0.95)

	
sk_dsp_comm.sigsys.bit_errors(z, data, start, Ns)

	A simple bit error counting function.

In its present form this function counts bit errors between
hard decision BPSK bits in +/-1 form and compares them with
0/1 binary data that was transmitted. Timing between the Tx
and Rx data is the responsibility of the user. An enhanced
version of this function, which features automatic synching
will be created in the future.

	Parameters

	
	zndarray of hard decision BPSK data prior to symbol spaced sampling

	

	datandarray of reference bits in 1/0 format

	

	starttiming reference for the received

	

	Nsthe number of samples per symbol

	

	Returns

	
	Pe_hatthe estimated probability of a bit error

	

Notes

The Tx and Rx data streams are exclusive-or’d and the then the bit errors
are summed, and finally divided by the number of bits observed to form an
estimate of the bit error probability. This function needs to be
enhanced to be more useful.

Examples

>>> from scipy import signal
>>> x,b, data = NRZ_bits(1000,10)
>>> # set Eb/N0 to 8 dB
>>> y = cpx_AWGN(x,8,10)
>>> # matched filter the signal
>>> z = signal.lfilter(b,1,y)
>>> # make bit decisions at 10 and Ns multiples thereafter
>>> Pe_hat = bit_errors(z,data,10,10)

	
sk_dsp_comm.sigsys.cascade_filters(b1, a1, b2, a2)

	Cascade two IIR digital filters into a single (b,a) coefficient set.

To cascade two digital filters (system functions) given their numerator
and denominator coefficients you simply convolve the coefficient arrays.

	Parameters

	
	b1ndarray of numerator coefficients for filter 1

	

	a1ndarray of denominator coefficients for filter 1

	

	b2ndarray of numerator coefficients for filter 2

	

	a2ndarray of denominator coefficients for filter 2

	

	Returns

	
	bndarray of numerator coefficients for the cascade

	

	andarray of denominator coefficients for the cascade

	

Examples

>>> from scipy import signal
>>> b1,a1 = signal.butter(3, 0.1)
>>> b2,a2 = signal.butter(3, 0.15)
>>> b,a = cascade_filters(b1,a1,b2,a2)

	
sk_dsp_comm.sigsys.conv_integral(x1, tx1, x2, tx2, extent=('f', 'f'))

	Continuous-time convolution of x1 and x2 with proper tracking of the output time axis.

Appromimate the convolution integral for the convolution of two continuous-time signals using the SciPy function signal. The time (sequence axis) are managed from input to output. y(t) = x1(t)*x2(t).

	Parameters

	
	x1ndarray of signal x1 corresponding to tx1

	

	tx1ndarray time axis for x1

	

	x2ndarray of signal x2 corresponding to tx2

	

	tx2ndarray time axis for x2

	

	extent(‘e1’,’e2’) where ‘e1’, ‘e2’ may be ‘f’ finite, ‘r’ right-sided, or ‘l’ left-sided

	

	Returns

	
	yndarray of output values y

	

	tyndarray of the corresponding time axis for y

	

Notes

The output time axis starts at the sum of the starting values in x1 and x2
and ends at the sum of the two ending values in x1 and x2. The time steps used in
x1(t) and x2(t) must match. The default extents of (‘f’,’f’) are used for signals
that are active (have support) on or within t1 and t2 respectively. A right-sided
signal such as exp(-a*t)*u(t) is semi-infinite, so it has extent ‘r’ and the
convolution output will be truncated to display only the valid results.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss
>>> tx = np.arange(-5,10,.01)
>>> x = ss.rect(tx-2,4) # pulse starts at t = 0
>>> y,ty = ss.conv_integral(x,tx,x,tx)
>>> plt.plot(ty,y) # expect a triangle on [0,8]
>>> plt.show()

(Source code)

[image: _images/sigsys-4_00_00.png]

Now, consider a pulse convolved with an exponential.

>>> h = 4*np.exp(-4*tx)*ss.step(tx)
>>> y,ty = ss.conv_integral(x,tx,h,tx,extent=('f','r')) # note extents set
>>> plt.plot(ty,y) # expect a pulse charge and discharge waveform

[image: _images/sigsys-4_01_00.png]

	
sk_dsp_comm.sigsys.conv_sum(x1, nx1, x2, nx2, extent=('f', 'f'))

	Discrete convolution of x1 and x2 with proper tracking of the output time axis.

Convolve two discrete-time signals using the SciPy function scipy.signal.convolution().
The time (sequence axis) are managed from input to output. y[n] = x1[n]*x2[n].

	Parameters

	
	x1ndarray of signal x1 corresponding to nx1

	

	nx1ndarray time axis for x1

	

	x2ndarray of signal x2 corresponding to nx2

	

	nx2ndarray time axis for x2

	

	extent(‘e1’,’e2’) where ‘e1’, ‘e2’ may be ‘f’ finite, ‘r’ right-sided, or ‘l’ left-sided

	

	Returns

	
	yndarray of output values y

	

	nyndarray of the corresponding sequence index n

	

Notes

The output time axis starts at the sum of the starting values in x1 and x2
and ends at the sum of the two ending values in x1 and x2. The default
extents of (‘f’,’f’) are used for signals that are active (have support)
on or within n1 and n2 respectively. A right-sided signal such as
a^n*u[n] is semi-infinite, so it has extent ‘r’ and the
convolution output will be truncated to display only the valid results.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss
>>> nx = np.arange(-5,10)
>>> x = ss.drect(nx,4)
>>> y,ny = ss.conv_sum(x,nx,x,nx)
>>> plt.stem(ny,y)
>>> plt.show()

(Source code)

[image: _images/sigsys-5_00_00.png]

Consider a pulse convolved with an exponential. (‘r’ type extent)

>>> h = 0.5**nx*ss.dstep(nx)
>>> y,ny = ss.conv_sum(x,nx,h,nx,('f','r')) # note extents set
>>> plt.stem(ny,y) # expect a pulse charge and discharge sequence

[image: _images/sigsys-5_01_00.png]

	
sk_dsp_comm.sigsys.cpx_AWGN(x, EsN0, Ns)

	Apply white Gaussian noise to a digital communications signal.

This function represents a complex baseband white Gaussian noise
digital communications channel. The input signal array may be real
or complex.

	Parameters

	
	xndarray noise free complex baseband input signal.

	

	EsNOset the channel Es/N0 (Eb/N0 for binary) level in dB

	

	Nsnumber of samples per symbol (bit)

	

	Returns

	
	yndarray x with additive noise added.

	

Notes

Set the channel energy per symbol-to-noise power spectral
density ratio (Es/N0) in dB.

Examples

>>> x,b, data = NRZ_bits(1000,10)
>>> # set Eb/N0 = 10 dB
>>> y = cpx_AWGN(x,10,10)

	
sk_dsp_comm.sigsys.cruise_control(wn, zeta, T, vcruise, vmax, tf_mode='H')

	Cruise control with PI controller and hill disturbance.

This function returns various system function configurations
for a the cruise control Case Study example found in
the supplementary article. The plant model is obtained by the
linearizing the equations of motion and the controller contains a
proportional and integral gain term set via the closed-loop parameters
natuarl frequency wn (rad/s) and damping zeta.

	Parameters

	
	wnclosed-loop natural frequency in rad/s, nominally 0.1

	

	zetaclosed-loop damping factor, nominally 1.0

	

	Tvehicle time constant, nominally 10 s

	

	vcruisecruise velocity set point, nominally 75 mph

	

	vmaxmaximum vehicle velocity, nominally 120 mph

	

	tf_mode‘H’, ‘HE’, ‘HVW’, or ‘HED’ controls the system function returned by the function

	

	‘H’closed-loop system function V(s)/R(s)

	

	‘HE’closed-loop system function E(s)/R(s)

	

	‘HVW’closed-loop system function V(s)/W(s)

	

	‘HED’closed-loop system function E(s)/D(s), where D is the hill disturbance input

	

	Returns

	
	bnumerator coefficient ndarray

	

	adenominator coefficient ndarray

	

Examples

>>> # return the closed-loop system function output/input velocity
>>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='H')
>>> # return the closed-loop system function loop error/hill disturbance
>>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='HED')

	
sk_dsp_comm.sigsys.deci24(x)

	Decimate by L = 24 using Butterworth filters.

The decimation is done using two three stages. Downsample sample by
L = 2 and lowpass filter, downsample by 3 and lowpass filter, then
downsample by L = 4 and lowpass filter. In all cases the lowpass
filter is a 10th-order Butterworth lowpass.

	Parameters

	
	xndarray of the input signal

	

	Returns

	
	yndarray of the output signal

	

Notes

The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to
track the upsampling by 2, 3, and 4 respectively.

Examples

>>> y = deci24(x)

	
sk_dsp_comm.sigsys.delta_eps(t, eps)

	Rectangular pulse approximation to impulse function.

	Parameters

	
	tndarray of time axis

	

	epspulse width

	

	Returns

	
	dndarray containing the impulse approximation

	

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import delta_eps
>>> t = np.arange(-2,2,.001)
>>> d = delta_eps(t,.1)
>>> plt.plot(t,d)
>>> plt.show()

(Source code)

[image: _images/sigsys-6.png]

	
sk_dsp_comm.sigsys.dimpulse(n)

	Discrete impulse function delta[n].

	Parameters

	
	nndarray of the time axis

	

	Returns

	
	xndarray of the signal delta[n]

	

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import dimpulse
>>> n = arange(-5,5)
>>> x = dimpulse(n)
>>> plt.stem(n,x)
>>> plt.show()

(Source code)

[image: _images/sigsys-7_00_00.png]

Shift the delta left by 2.

>>> x = dimpulse(n+2)
>>> plt.stem(n,x)

[image: _images/sigsys-7_01_00.png]

	
sk_dsp_comm.sigsys.downsample(x, M, p=0)

	Downsample by factor M

Keep every Mth sample of the input. The phase of the input samples
kept can be selected.

	Parameters

	
	xndarray of input signal values

	

	Mdownsample factor

	

	pphase of decimated value, 0 (default), 1, …, M-1

	

	Returns

	
	yndarray of the output signal values

	

Examples

>>> y = downsample(x,3)
>>> y = downsample(x,3,1)

	
sk_dsp_comm.sigsys.drect(n, N)

	Discrete rectangle function of duration N samples.

The signal is active on the interval 0 <= n <= N-1. Also known
as the rectangular window function, which is available in
scipy.signal.

	Parameters

	
	nndarray of the time axis

	

	Nthe pulse duration

	

	Returns

	
	xndarray of the signal

	

Notes

The discrete rectangle turns on at n = 0, off at n = N-1 and
has duration of exactly N samples.

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import drect
>>> n = arange(-5,5)
>>> x = drect(n, N=3)
>>> plt.stem(n,x)
>>> plt.show()

(Source code)

[image: _images/sigsys-8_00_00.png]

Shift the delta left by 2.

>>> x = drect(n+2, N=3)
>>> plt.stem(n,x)

[image: _images/sigsys-8_01_00.png]

	
sk_dsp_comm.sigsys.dstep(n)

	Discrete step function u[n].

	Parameters

	
	nndarray of the time axis

	

	Returns

	
	xndarray of the signal u[n]

	

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import dstep
>>> n = arange(-5,5)
>>> x = dstep(n)
>>> plt.stem(n,x)
>>> plt.show()

(Source code)

[image: _images/sigsys-9_00_00.png]

Shift the delta left by 2.

>>> x = dstep(n+2)
>>> plt.stem(n,x)

[image: _images/sigsys-9_01_00.png]

	
sk_dsp_comm.sigsys.env_det(x)

	Ideal envelope detector.

This function retains the positive half cycles of the input signal.

	Parameters

	
	xndarray of the input sugnal

	

	Returns

	
	yndarray of the output signal

	

Examples

>>> n = arange(0,100)
>>> # 1 kHz message signal
>>> m = cos(2*pi*1000/8000.*n)
>>> x192, t192, m24 = am_tx(m,0.8,fc=75e3)
>>> y = env_det(x192)

	
sk_dsp_comm.sigsys.ex6_2(n)

	Generate a triangle pulse as described in Example 6-2
of Chapter 6.

You need to supply an index array n that covers at least [-2, 5].
The function returns the hard-coded signal of the example.

	Parameters

	
	ntime index ndarray covering at least -2 to +5.

	

	Returns

	
	xndarray of signal samples in x

	

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> n = np.arange(-5,8)
>>> x = ss.ex6_2(n)
>>> plt.stem(n,x) # creates a stem plot of x vs n

(Source code)

[image: _images/sigsys-10.png]

	
sk_dsp_comm.sigsys.eye_plot(x, L, S=0)

	Eye pattern plot of a baseband digital communications waveform.

The signal must be real, but can be multivalued in terms of the underlying
modulation scheme. Used for BPSK eye plots in the Case Study article.

	Parameters

	
	xndarray of the real input data vector/array

	

	Ldisplay length in samples (usually two symbols)

	

	Sstart index

	

	Returns

	
	NothingA plot window opens containing the eye plot

	

Notes

Increase S to eliminate filter transients.

Examples

1000 bits at 10 samples per bit with ‘rc’ shaping.

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> x,b, data = ss.NRZ_bits(1000,10,'rc')
>>> ss.eye_plot(x,20,60)

(Source code)

[image: _images/sigsys-11.png]

	
sk_dsp_comm.sigsys.fir_iir_notch(fi, fs, r=0.95)

	Design a second-order FIR or IIR notch filter.

A second-order FIR notch filter is created by placing conjugate
zeros on the unit circle at angle corresponidng to the notch center
frequency. The IIR notch variation places a pair of conjugate poles
at the same angle, but with radius r < 1 (typically 0.9 to 0.95).

	Parameters

	
	finotch frequency is Hz relative to fs

	

	fsthe sampling frequency in Hz, e.g. 8000

	

	rpole radius for IIR version, default = 0.95

	

	Returns

	
	bnumerator coefficient ndarray

	

	adenominator coefficient ndarray

	

Notes

If the pole radius is 0 then an FIR version is created, that is
there are no poles except at z = 0.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss

>>> b_FIR, a_FIR = ss.fir_iir_notch(1000,8000,0)
>>> ss.zplane(b_FIR, a_FIR)
>>> plt.show()

(Source code)

[image: _images/sigsys-12_00_00.png]

>>> b_IIR, a_IIR = ss.fir_iir_notch(1000,8000)
>>> ss.zplane(b_IIR, a_IIR)

[image: _images/sigsys-12_01_00.png]

	
sk_dsp_comm.sigsys.from_wav(filename)

	Read a wave file.

A wrapper function for scipy.io.wavfile.read
that also includes int16 to float [-1,1] scaling.

	Parameters

	
	filenamefile name string

	

	Returns

	
	fssampling frequency in Hz

	

	xndarray of normalized to 1 signal samples

	

Examples

>>> fs,x = from_wav('test_file.wav')

	
sk_dsp_comm.sigsys.fs_approx(Xk, fk, t)

	Synthesize periodic signal x(t) using Fourier series coefficients at harmonic frequencies

Assume the signal is real so coefficients Xk are supplied for nonnegative
indicies. The negative index coefficients are assumed to be complex
conjugates.

	Parameters

	
	Xkndarray of complex Fourier series coefficients

	

	fkndarray of harmonic frequencies in Hz

	

	tndarray time axis corresponding to output signal array x_approx

	

	Returns

	
	x_approxndarray of periodic waveform approximation over time span t

	

Examples

>>> t = arange(0,2,.002)
>>> # a 20% duty cycle pulse train
>>> n = arange(0,20,1) # 0 to 19th harmonic
>>> fk = 1*n % period = 1s
>>> t, x_approx = fs_approx(Xk,fk,t)
>>> plot(t,x_approx)

	
sk_dsp_comm.sigsys.fs_coeff(xp, N, f0, one_side=True)

	Numerically approximate the Fourier series coefficients given periodic x(t).

The input is assummed to represent one period of the waveform
x(t) that has been uniformly sampled. The number of samples supplied
to represent one period of the waveform sets the sampling rate.

	Parameters

	
	xpndarray of one period of the waveform x(t)

	

	Nmaximum Fourier series coefficient, [0,…,N]

	

	f0fundamental frequency used to form fk.

	

	Returns

	
	Xkndarray of the coefficients over indices [0,1,…,N]

	

	fkndarray of the harmonic frequencies [0, f0,2f0,…,Nf0]

	

Notes

len(xp) >= 2*N+1 as len(xp) is the fft length.

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> import sk_dsp_comm.sigsys as ss
>>> t = arange(0,1,1/1024.)
>>> # a 20% duty cycle pulse starting at t = 0
>>> x_rect = ss.rect(t-.1,0.2)
>>> Xk, fk = ss.fs_coeff(x_rect,25,10)
>>> # plot the spectral lines
>>> ss.line_spectra(fk,Xk,'mag')
>>> plt.show()

(Source code)

[image: _images/sigsys-13.png]

	
sk_dsp_comm.sigsys.ft_approx(x, t, Nfft)

	Approximate the Fourier transform of a finite duration signal using scipy.signal.freqz()

	Parameters

	
	xinput signal array

	

	ttime array used to create x(t)

	

	Nfftthe number of frdquency domain points used to

	approximate X(f) on the interval [fs/2,fs/2], where
fs = 1/Dt. Dt being the time spacing in array t

	Returns

	
	ffrequency axis array in Hz

	

	Xthe Fourier transform approximation (complex)

	

Notes

The output time axis starts at the sum of the starting values in x1 and x2
and ends at the sum of the two ending values in x1 and x2. The default
extents of (‘f’,’f’) are used for signals that are active (have support)
on or within n1 and n2 respectively. A right-sided signal such as
\(a^n*u[n]\) is semi-infinite, so it has extent ‘r’ and the
convolution output will be truncated to display only the valid results.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss
>>> fs = 100 # sampling rate in Hz
>>> tau = 1
>>> t = np.arange(-5,5,1/fs)
>>> x0 = ss.rect(t-.5,tau)
>>> plt.figure(figsize=(6,5))
>>> plt.plot(t,x0)
>>> plt.grid()
>>> plt.ylim([-0.1,1.1])
>>> plt.xlim([-2,2])
>>> plt.title(r'Exact Waveform')
>>> plt.xlabel(r'Time (s)')
>>> plt.ylabel(r'$x_0(t)$')
>>> plt.show()

(Source code)

[image: _images/sigsys-14_00_00.png]

>>> # FT Exact Plot
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss
>>> fs = 100 # sampling rate in Hz
>>> tau = 1
>>> t = np.arange(-5,5,1/fs)
>>> x0 = ss.rect(t-.5,tau)
>>> fe = np.arange(-10,10,.01)
>>> X0e = tau*np.sinc(fe*tau)
>>> plt.plot(fe,abs(X0e))
>>> #plot(f,angle(X0))
>>> plt.grid()
>>> plt.xlim([-10,10])
>>> plt.title(r'Exact (Theory) Spectrum Magnitude')
>>> plt.xlabel(r'Frequency (Hz)')
>>> plt.ylabel(r'$|X_0e(f)|$')
>>> plt.show()

[image: _images/sigsys-14_01_00.png]

>>> # FT Approximation Plot
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss
>>> fs = 100 # sampling rate in Hz
>>> tau = 1
>>> t = np.arange(-5,5,1/fs)
>>> x0 = ss.rect(t-.5,tau)
>>> f,X0 = ss.ft_approx(x0,t,4096)
>>> plt.plot(f,abs(X0))
>>> #plt.plot(f,angle(X0))
>>> plt.grid()
>>> plt.xlim([-10,10])
>>> plt.title(r'Approximation Spectrum Magnitude')
>>> plt.xlabel(r'Frequency (Hz)')
>>> plt.ylabel(r'$|X_0(f)|$');
>>> plt.tight_layout()
>>> plt.show()

[image: _images/sigsys-14_02_00.png]

	
sk_dsp_comm.sigsys.interp24(x)

	Interpolate by L = 24 using Butterworth filters.

The interpolation is done using three stages. Upsample by
L = 2 and lowpass filter, upsample by 3 and lowpass filter, then
upsample by L = 4 and lowpass filter. In all cases the lowpass
filter is a 10th-order Butterworth lowpass.

	Parameters

	
	xndarray of the input signal

	

	Returns

	
	yndarray of the output signal

	

Notes

The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to
track the upsampling by 2, 3, and 4 respectively.

Examples

>>> y = interp24(x)

	
sk_dsp_comm.sigsys.line_spectra(fk, Xk, mode, sides=2, linetype='b', lwidth=2, floor_dB=-100, fsize=(6, 4))

	Plot the Fouier series line spectral given the coefficients.

This function plots two-sided and one-sided line spectra of a periodic
signal given the complex exponential Fourier series coefficients and
the corresponding harmonic frequencies.

	Parameters

	
	fkvector of real sinusoid frequencies

	

	Xkmagnitude and phase at each positive frequency in fk

	

	mode‘mag’ => magnitude plot, ‘magdB’ => magnitude in dB plot,

	

	mode cont‘magdBn’ => magnitude in dB normalized, ‘phase’ => a phase plot in radians

	

	sides2; 2-sided or 1-sided

	

	linetypeline type per Matplotlib definitions, e.g., ‘b’;

	

	lwidth2; linewidth in points

	

	fsizeoptional figure size in inches, default = (6,4) inches

	

	Returns

	
	NothingA plot window opens containing the line spectrum plot

	

Notes

Since real signals are assumed the frequencies of fk are 0 and/or positive
numbers. The supplied Fourier coefficients correspond.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sk_dsp_comm.sigsys import line_spectra
>>> n = np.arange(0,25)
>>> # a pulse train with 10 Hz fundamental and 20% duty cycle
>>> fk = n*10
>>> Xk = np.sinc(n*10*.02)*np.exp(-1j*2*np.pi*n*10*.01) # 1j = sqrt(-1)

>>> line_spectra(fk,Xk,'mag')
>>> plt.show()

(Source code)

[image: _images/sigsys-15_00_00.png]

>>> line_spectra(fk,Xk,'phase')

[image: _images/sigsys-15_01_00.png]

	
sk_dsp_comm.sigsys.lms_ic(r, M, mu, delta=1)

	Least mean square (LMS) interference canceller adaptive filter.

A complete LMS adaptive filter simulation function for the case of
interference cancellation. Used in the digital filtering case study.

	Parameters

	
	MFIR Filter length (order M-1)

	

	deltaDelay used to generate the reference signal

	

	muLMS step-size

	

	deltadecorrelation delay between input and FIR filter input

	

	Returns

	
	nndarray Index vector

	

	rndarray noisy (with interference) input signal

	

	r_hatndarray filtered output (NB_hat[n])

	

	endarray error sequence (WB_hat[n])

	

	aondarray final value of weight vector

	

	Fndarray frequency response axis vector

	

	Aondarray frequency response of filter

	

Examples

>>> # import a speech signal
>>> fs,s = from_wav('OSR_us_000_0030_8k.wav')
>>> # add interference at 1kHz and 1.5 kHz and
>>> # truncate to 5 seconds
>>> r = soi_snoi_gen(s,10,5*8000,[1000, 1500])
>>> # simulate with a 64 tap FIR and mu = 0.005
>>> n,r,r_hat,e,ao,F,Ao = lms_ic(r,64,0.005)

	
sk_dsp_comm.sigsys.lp_samp(fb, fs, fmax, N, shape='tri', fsize=(6, 4))

	Lowpass sampling theorem plotting function.

Display the spectrum of a sampled signal after setting the bandwidth,
sampling frequency, maximum display frequency, and spectral shape.

	Parameters

	
	fbspectrum lowpass bandwidth in Hz

	

	fssampling frequency in Hz

	

	fmaxplot over [-fmax,fmax]

	

	shape‘tri’ or ‘line’

	

	Nnumber of translates, N positive and N negative

	

	fsizethe size of the figure window, default (6,4)

	

	Returns

	
	NothingA plot window opens containing the spectrum plot

	

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.sigsys import lp_samp

No aliasing as bandwidth 10 Hz < 25/2; fs > fb.

>>> lp_samp(10,25,50,10)
>>> plt.show()

(Source code)

[image: _images/sigsys-16_00_00.png]

Now aliasing as bandwidth 15 Hz > 25/2; fs < fb.

>>> lp_samp(15,25,50,10)

[image: _images/sigsys-16_01_00.png]

	
sk_dsp_comm.sigsys.lp_tri(f, fb)

	Triangle spectral shape function used by lp_samp().

	Parameters

	
	fndarray containing frequency samples

	

	fbthe bandwidth as a float constant

	

	Returns

	
	xndarray of spectrum samples for a single triangle shape

	

Notes

This is a support function for the lowpass spectrum plotting function
lp_samp().

Examples

>>> x = lp_tri(f, fb)

	
sk_dsp_comm.sigsys.m_seq(m)

	Generate an m-sequence ndarray using an all-ones initialization.

Available m-sequence (PN generators) include m = 2,3,…,12, & 16.

	Parameters

	
	mthe number of shift registers. 2,3, .., 12, & 16

	

	Returns

	
	cndarray of one period of the m-sequence

	

Notes

The sequence period is 2**m - 1 (2^m - 1).

Examples

>>> c = m_seq(5)

	
sk_dsp_comm.sigsys.my_psd(x, NFFT=1024, Fs=1)

	A local version of NumPy’s PSD function that returns the plot arrays.

A mlab.psd wrapper function that returns two ndarrays;
makes no attempt to auto plot anything.

	Parameters

	
	xndarray input signal

	

	NFFTa power of two, e.g., 2**10 = 1024

	

	Fsthe sampling rate in Hz

	

	Returns

	
	Pxndarray of the power spectrum estimate

	

	fndarray of frequency values

	

Notes

This function makes it easier to overlay spectrum plots because
you have better control over the axis scaling than when using psd()
in the autoscale mode.

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import log10
>>> from sk_dsp_comm import sigsys as ss
>>> x,b, data = ss.NRZ_bits(10000,10)
>>> Px,f = ss.my_psd(x,2**10,10)
>>> plt.plot(f, 10*log10(Px))
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (Hz)")
>>> plt.show()

(Source code)

[image: _images/sigsys-17.png]

	
sk_dsp_comm.sigsys.peaking(GdB, fc, Q=3.5, fs=44100.0)

	A second-order peaking filter having GdB gain at fc and approximately
and 0 dB otherwise.

The filter coefficients returns correspond to a biquadratic system function
containing five parameters.

	Parameters

	
	GdBLowpass gain in dB

	

	fcCenter frequency in Hz

	

	QFilter Q which is inversely proportional to bandwidth

	

	fsSampling frquency in Hz

	

	Returns

	
	bndarray containing the numerator filter coefficients

	

	andarray containing the denominator filter coefficients

	

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sk_dsp_comm.sigsys import peaking
>>> from scipy import signal
>>> b,a = peaking(2.0,500)
>>> f = np.logspace(1,5,400)
>>> w,H = signal.freqz(b,a,2*np.pi*f/44100)
>>> plt.semilogx(f,20*np.log10(abs(H)))
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (Hz)")
>>> plt.show()

(Source code)

[image: _images/sigsys-18_00_00.png]

>>> b,a = peaking(-5.0,500,4)
>>> w,H = signal.freqz(b,a,2*np.pi*f/44100)
>>> plt.semilogx(f,20*np.log10(abs(H)))
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (Hz)")

[image: _images/sigsys-18_01_00.png]

	
sk_dsp_comm.sigsys.position_CD(Ka, out_type='fb_exact')

	CD sled position control case study of Chapter 18.

The function returns the closed-loop and open-loop
system function for a CD/DVD sled position control
system. The loop amplifier gain is the only variable
that may be changed. The returned system function can
however be changed.

	Parameters

	
	Kaloop amplifier gain, start with 50.

	

	out_type‘open_loop’ for open loop system function

	

	out_type‘fb_approx’ for closed-loop approximation

	

	out_type‘fb_exact’ for closed-loop exact

	

	Returns

	
	bnumerator coefficient ndarray

	

	adenominator coefficient ndarray

	

Notes

With the exception of the loop amplifier gain, all
other parameters are hard-coded from Case Study example.

Examples

>>> b,a = position_CD(Ka,'fb_approx')
>>> b,a = position_CD(Ka,'fb_exact')

	
sk_dsp_comm.sigsys.prin_alias(f_in, fs)

	Calculate the principle alias frequencies.

Given an array of input frequencies the function returns an
array of principle alias frequencies.

	Parameters

	
	f_inndarray of input frequencies

	

	fssampling frequency

	

	Returns

	
	f_outndarray of principle alias frequencies

	

Examples

>>> # Linear frequency sweep from 0 to 50 Hz
>>> f_in = arange(0,50,0.1)
>>> # Calculate principle alias with fs = 10 Hz
>>> f_out = prin_alias(f_in,10)

	
sk_dsp_comm.sigsys.rc_imp(Ns, alpha, M=6)

	A truncated raised cosine pulse used in digital communications.

The pulse shaping factor \(0< \alpha < 1\) is required as well as the
truncation factor M which sets the pulse duration to be 2*M*Tsymbol.

	Parameters

	
	Nsnumber of samples per symbol

	

	alphaexcess bandwidth factor on (0, 1), e.g., 0.35

	

	Mequals RC one-sided symbol truncation factor

	

	Returns

	
	bndarray containing the pulse shape

	

Notes

The pulse shape b is typically used as the FIR filter coefficients
when forming a pulse shaped digital communications waveform.

Examples

Ten samples per symbol and alpha = 0.35.

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import rc_imp
>>> b = rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()

(Source code)

[image: _images/sigsys-19.png]

	
sk_dsp_comm.sigsys.rect(t, tau)

	Approximation to the rectangle pulse Pi(t/tau).

In this numerical version of Pi(t/tau) the pulse is active
over -tau/2 <= t <= tau/2.

	Parameters

	
	tndarray of the time axis

	

	tauthe pulse width

	

	Returns

	
	xndarray of the signal Pi(t/tau)

	

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import rect
>>> t = arange(-1,5,.01)
>>> x = rect(t,1.0)
>>> plt.plot(t,x)
>>> plt.ylim([0, 1.01])
>>> plt.show()

(Source code)

[image: _images/sigsys-20_00_00.png]

To turn on the pulse at t = 1 shift t.

>>> x = rect(t - 1.0,1.0)
>>> plt.plot(t,x)
>>> plt.ylim([0, 1.01])

[image: _images/sigsys-20_01_00.png]

	
sk_dsp_comm.sigsys.rect_conv(n, N_len)

	The theoretical result of convolving two rectangle sequences.

The result is a triangle. The solution is
based on pure analysis. Simply coded as opposed
to efficiently coded.

	Parameters

	
	nndarray of time axis

	

	N_lenrectangle pulse duration

	

	Returns

	
	yndarray of of output signal

	

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import rect_conv
>>> n = arange(-5,20)
>>> y = rect_conv(n,6)
>>> plt.plot(n, y)
>>> plt.show()

(Source code)

[image: _images/sigsys-21.png]

	
sk_dsp_comm.sigsys.scatter(x, Ns, start)

	Sample a baseband digital communications waveform at the symbol spacing.

	Parameters

	
	xndarray of the input digital comm signal

	

	Nsnumber of samples per symbol (bit)

	

	startthe array index to start the sampling

	

	Returns

	
	xIndarray of the real part of x following sampling

	

	xQndarray of the imaginary part of x following sampling

	

Notes

Normally the signal is complex, so the scatter plot contains
clusters at points in the complex plane. For a binary signal
such as BPSK, the point centers are nominally +/-1 on the real
axis. Start is used to eliminate transients from the FIR
pulse shaping filters from appearing in the scatter plot.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> x,b, data = ss.NRZ_bits(1000,10,'rc')
>>> # Add some noise so points are now scattered about +/-1
>>> y = ss.cpx_AWGN(x,20,10)
>>> yI,yQ = ss.scatter(y,10,60)
>>> plt.plot(yI,yQ,'.')
>>> plt.axis('equal')
>>> plt.ylabel("Quadrature")
>>> plt.xlabel("In-Phase")
>>> plt.grid()
>>> plt.show()

(Source code)

[image: _images/sigsys-22.png]

	
sk_dsp_comm.sigsys.simpleQuant(x, Btot, Xmax, Limit)

	A simple rounding quantizer for bipolar signals having Btot = B + 1 bits.

This function models a quantizer that employs Btot bits that has one of
three selectable limiting types: saturation, overflow, and none.
The quantizer is bipolar and implements rounding.

	Parameters

	
	xinput signal ndarray to be quantized

	

	Btottotal number of bits in the quantizer, e.g. 16

	

	Xmaxquantizer full-scale dynamic range is [-Xmax, Xmax]

	

	Limit = Limiting of the form ‘sat’, ‘over’, ‘none’

	

	Returns

	
	xqquantized output ndarray

	

Notes

The quantization can be formed as e = xq - x

Examples

>>> import matplotlib.pyplot as plt
>>> from matplotlib.mlab import psd
>>> import numpy as np
>>> from sk_dsp_comm import sigsys as ss
>>> n = np.arange(0,10000)
>>> x = np.cos(2*np.pi*0.211*n)
>>> y = ss.sinusoidAWGN(x,90)
>>> Px, f = psd(y,2**10,Fs=1)
>>> plt.plot(f, 10*np.log10(Px))
>>> plt.ylim([-80, 25])
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel(r'Normalized Frequency $\omega/2\pi$')
>>> plt.show()

(Source code)

[image: _images/sigsys-23_00_00.png]

>>> yq = ss.simpleQuant(y,12,1,'sat')
>>> Px, f = psd(yq,2**10,Fs=1)
>>> plt.plot(f, 10*np.log10(Px))
>>> plt.ylim([-80, 25])
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel(r'Normalized Frequency $\omega/2\pi$')
>>> plt.show()

[image: _images/sigsys-23_01_00.png]

	
sk_dsp_comm.sigsys.simple_SA(x, NS, NFFT, fs, NAVG=1, window='boxcar')

	Spectral estimation using windowing and averaging.

This function implements averaged periodogram spectral estimation
estimation similar to the NumPy’s psd() function, but more
specialized for the the windowing case study of Chapter 16.

	Parameters

	
	xndarray containing the input signal

	

	NSThe subrecord length less zero padding, e.g. NS < NFFT

	

	NFFTFFT length, e.g., 1024 = 2**10

	

	fssampling rate in Hz

	

	NAVGthe number of averages, e.g., 1 for deterministic signals

	

	windowhardcoded window ‘boxcar’ (default) or ‘hanning’

	

	Returns

	
	fndarray frequency axis in Hz on [0, fs/2]

	

	Sxndarray the power spectrum estimate

	

Notes

The function also prints the maximum number of averages K possible
for the input data record.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sk_dsp_comm import sigsys as ss
>>> n = np.arange(0,2048)
>>> x = np.cos(2*np.pi*1000/10000*n) + 0.01*np.cos(2*np.pi*3000/10000*n)
>>> f, Sx = ss.simple_SA(x,128,512,10000)
>>> plt.plot(f, 10*np.log10(Sx))
>>> plt.ylim([-80, 0])
>>> plt.xlabel("Frequency (Hz)")
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.show()

(Source code)

[image: _images/sigsys-24_00_00.png]

With a hanning window.

>>> f, Sx = ss.simple_SA(x,256,1024,10000,window='hanning')
>>> plt.plot(f, 10*np.log10(Sx))
>>> plt.xlabel("Frequency (Hz)")
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.ylim([-80, 0])

[image: _images/sigsys-24_01_00.png]

	
sk_dsp_comm.sigsys.sinusoidAWGN(x, SNRdB)

	Add white Gaussian noise to a single real sinusoid.

Input a single sinusoid to this function and it returns a noisy
sinusoid at a specific SNR value in dB. Sinusoid power is calculated
using np.var.

	Parameters

	
	xInput signal as ndarray consisting of a single sinusoid

	

	SNRdBSNR in dB for output sinusoid

	

	Returns

	
	yNoisy sinusoid return vector

	

Examples

>>> # set the SNR to 10 dB
>>> n = arange(0,10000)
>>> x = cos(2*pi*0.04*n)
>>> y = sinusoidAWGN(x,10.0)

	
sk_dsp_comm.sigsys.soi_snoi_gen(s, SIR_dB, N, fi, fs=8000)

	Add an interfering sinusoidal tone to the input signal at a given SIR_dB.

The input is the signal of interest (SOI) and number of sinsuoid signals
not of interest (SNOI) are addedto the SOI at a prescribed signal-to-
intereference SIR level in dB.

	Parameters

	
	sndarray of signal of SOI

	

	SIR_dBinterference level in dB

	

	NTrim input signal s to length N + 1 samples

	

	findarray of intereference frequencies in Hz

	

	fssampling rate in Hz, default is 8000 Hz

	

	Returns

	
	rndarray of combined signal plus intereference of length N+1 samples

	

Examples

>>> # load a speech ndarray and trim to 5*8000 + 1 samples
>>> fs,s = from_wav('OSR_us_000_0030_8k.wav')
>>> r = soi_snoi_gen(s,10,5*8000,[1000, 1500])

	
sk_dsp_comm.sigsys.splane(b, a, auto_scale=True, size=[-1, 1, -1, 1])

	Create an s-plane pole-zero plot.

As input the function uses the numerator and denominator
s-domain system function coefficient ndarrays b and a respectively.
Assumed to be stored in descending powers of s.

	Parameters

	
	bnumerator coefficient ndarray.

	

	adenominator coefficient ndarray.

	

	auto_scaleTrue

	

	size[xmin,xmax,ymin,ymax] plot scaling when scale = False

	

	Returns

	
	(M,N)tuple of zero and pole counts + plot window

	

Notes

This function tries to identify repeated poles and zeros and will
place the multiplicity number above and to the right of the pole or zero.
The difficulty is setting the tolerance for this detection. Currently it
is set at 1e-3 via the function signal.unique_roots.

Examples

>>> # Here the plot is generated using auto_scale
>>> splane(b,a)
>>> # Here the plot is generated using manual scaling
>>> splane(b,a,False,[-10,1,-10,10])

	
sk_dsp_comm.sigsys.sqrt_rc_imp(Ns, alpha, M=6)

	A truncated square root raised cosine pulse used in digital communications.

The pulse shaping factor 0< alpha < 1 is required as well as the
truncation factor M which sets the pulse duration to be 2*M*Tsymbol.

	Parameters

	
	Nsnumber of samples per symbol

	

	alphaexcess bandwidth factor on (0, 1), e.g., 0.35

	

	Mequals RC one-sided symbol truncation factor

	

	Returns

	
	bndarray containing the pulse shape

	

Notes

The pulse shape b is typically used as the FIR filter coefficients
when forming a pulse shaped digital communications waveform. When
square root raised cosine (SRC) pulse is used generate Tx signals and
at the receiver used as a matched filter (receiver FIR filter), the
received signal is now raised cosine shaped, this having zero
intersymbol interference and the optimum removal of additive white
noise if present at the receiver input.

Examples

>>> # ten samples per symbol and alpha = 0.35
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import sqrt_rc_imp
>>> b = sqrt_rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()

(Source code)

[image: _images/sigsys-25.png]

	
sk_dsp_comm.sigsys.step(t)

	Approximation to step function signal u(t).

In this numerical version of u(t) the step turns on at t = 0.

	Parameters

	
	tndarray of the time axis

	

	Returns

	
	xndarray of the step function signal u(t)

	

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import step
>>> t = arange(-1,5,.01)
>>> x = step(t)
>>> plt.plot(t,x)
>>> plt.ylim([-0.01, 1.01])
>>> plt.show()

(Source code)

[image: _images/sigsys-26_00_00.png]

To turn on at t = 1, shift t.

>>> x = step(t - 1.0)
>>> plt.ylim([-0.01, 1.01])
>>> plt.plot(t,x)

[image: _images/sigsys-26_01_00.png]

	
sk_dsp_comm.sigsys.ten_band_eq_filt(x, GdB, Q=3.5)

	Filter the input signal x with a ten-band equalizer having octave gain values in ndarray GdB.

The signal x is filtered using octave-spaced peaking filters starting at 31.25 Hz and
stopping at 16 kHz. The Q of each filter is 3.5, but can be changed. The sampling rate
is assumed to be 44.1 kHz.

	Parameters

	
	xndarray of the input signal samples

	

	GdBndarray containing ten octave band gain values [G0dB,…,G9dB]

	

	QQuality factor vector for each of the NB peaking filters

	

	Returns

	
	yndarray of output signal samples

	

Examples

>>> # Test with white noise
>>> w = randn(100000)
>>> y = ten_band_eq_filt(x,GdB)
>>> psd(y,2**10,44.1)

	
sk_dsp_comm.sigsys.ten_band_eq_resp(GdB, Q=3.5)

	Create a frequency response magnitude plot in dB of a ten band equalizer
using a semilogplot (semilogx()) type plot

	Parameters

	
	GdBGain vector for 10 peaking filters [G0,…,G9]

	

	QQuality factor for each peaking filter (default 3.5)

	

	Returns

	
	Nothingtwo plots are created

	

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> ss.ten_band_eq_resp([0,10.0,0,0,-1,0,5,0,-4,0])
>>> plt.show()

(Source code)

[image: _images/sigsys-27.png]

	
sk_dsp_comm.sigsys.to_wav(filename, rate, x)

	Write a wave file.

A wrapper function for scipy.io.wavfile.write
that also includes int16 scaling and conversion.
Assume input x is [-1,1] values.

	Parameters

	
	filenamefile name string

	

	ratesampling frequency in Hz

	

	Returns

	
	Nothingwrites only the *.wav file

	

Examples

>>> to_wav('test_file.wav', 8000, x)

	
sk_dsp_comm.sigsys.tri(t, tau)

	Approximation to the triangle pulse Lambda(t/tau).

In this numerical version of Lambda(t/tau) the pulse is active
over -tau <= t <= tau.

	Parameters

	
	tndarray of the time axis

	

	tauone half the triangle base width

	

	Returns

	
	xndarray of the signal Lambda(t/tau)

	

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import tri
>>> t = arange(-1,5,.01)
>>> x = tri(t,1.0)
>>> plt.plot(t,x)
>>> plt.show()

(Source code)

[image: _images/sigsys-28_00_00.png]

To turn on at t = 1, shift t.

>>> x = tri(t - 1.0,1.0)
>>> plt.plot(t,x)

[image: _images/sigsys-28_01_00.png]

	
sk_dsp_comm.sigsys.unique_cpx_roots(rlist, tol=0.001)

	The average of the root values is used when multiplicity
is greater than one.

Mark Wickert October 2016

	
sk_dsp_comm.sigsys.upsample(x, L)

	Upsample by factor L

Insert L - 1 zero samples in between each input sample.

	Parameters

	
	xndarray of input signal values

	

	Lupsample factor

	

	Returns

	
	yndarray of the output signal values

	

Examples

>>> y = upsample(x,3)

	
sk_dsp_comm.sigsys.zplane(b, a, auto_scale=True, size=2, detect_mult=True, tol=0.001)

	Create an z-plane pole-zero plot.

Create an z-plane pole-zero plot using the numerator
and denominator z-domain system function coefficient
ndarrays b and a respectively. Assume descending powers of z.

	Parameters

	
	bndarray of the numerator coefficients

	

	andarray of the denominator coefficients

	

	auto_scalebool (default True)

	

	sizeplot radius maximum when scale = False

	

	Returns

	
	(M,N)tuple of zero and pole counts + plot window

	

Notes

This function tries to identify repeated poles and zeros and will
place the multiplicity number above and to the right of the pole or zero.
The difficulty is setting the tolerance for this detection. Currently it
is set at 1e-3 via the function signal.unique_roots.

Examples

>>> # Here the plot is generated using auto_scale
>>> zplane(b,a)
>>> # Here the plot is generated using manual scaling
>>> zplane(b,a,False,1.5)

synchronization

A Digital Communications Synchronization
and PLLs Function Module

Copyright (c) March 2017, Mark Wickert
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.

	
sk_dsp_comm.synchronization.DD_carrier_sync(z, M, BnTs, zeta=0.707, type=0)

	z_prime,a_hat,e_phi = DD_carrier_sync(z,M,BnTs,zeta=0.707,type=0)
Decision directed carrier phase tracking

z = complex baseband PSK signal at one sample per symbol
M = The PSK modulation order, i.e., 2, 8, or 8.

	BnTs = time bandwidth product of loop bandwidth and the symbol period,

	thus the loop bandwidth as a fraction of the symbol rate.

zeta = loop damping factor
type = Phase error detector type: 0 <> ML, 1 <> heuristic

	z_prime = phase rotation output (like soft symbol values)

	
	a_hat = the hard decision symbol values landing at the constellation

	values

e_phi = the phase error e(k) into the loop filter

	Ns = Nominal number of samples per symbol (Ts/T) in the carrier

	phase tracking loop, almost always 1

	Kp = The phase detector gain in the carrier phase tracking loop;

	This value depends upon the algorithm type. For the ML scheme
described at the end of notes Chapter 9, A = 1, K 1/sqrt(2),
so Kp = sqrt(2).

Mark Wickert July 2014

Motivated by code found in M. Rice, Digital Communications A Discrete-Time
Approach, Prentice Hall, New Jersey, 2009. (ISBN 978-0-13-030497-1).

	
sk_dsp_comm.synchronization.NDA_symb_sync(z, Ns, L, BnTs, zeta=0.707, I_ord=3)

	

	z = complex baseband input signal at nominally Ns samples

	per symbol

	Ns = Nominal number of samples per symbol (Ts/T) in the symbol

	tracking loop, often 4

	BnTs = time bandwidth product of loop bandwidth and the symbol period,

	thus the loop bandwidth as a fraction of the symbol rate.

zeta = loop damping factor

I_ord = interpolator order, 1, 2, or 3

e_tau = the timing error e(k) input to the loop filter

	Kp = The phase detector gain in the symbol tracking loop; for the

	NDA algoithm used here always 1

Mark Wickert July 2014

Motivated by code found in M. Rice, Digital Communications A Discrete-Time
Approach, Prentice Hall, New Jersey, 2009. (ISBN 978-0-13-030497-1).

	
sk_dsp_comm.synchronization.PLL1(theta, fs, loop_type, Kv, fn, zeta, non_lin)

	Baseband Analog PLL Simulation Model

	Parameters

	
	theta – input phase deviation in radians

	fs – sampling rate in sample per second or Hz

	loop_type – 1, first-order loop filter F(s)=K_LF; 2, integrator
with lead compensation F(s) = (1 + s tau2)/(s tau1),
i.e., a type II, or 3, lowpass with lead compensation
F(s) = (1 + s tau2)/(1 + s tau1)

	Kv – VCO gain in Hz/v; note presently assume Kp = 1v/rad
and K_LF = 1; the user can easily change this

	fn – Loop natural frequency (loops 2 & 3) or cutoff
frquency (loop 1)

	zeta – Damping factor for loops 2 & 3

	non_lin – 0, linear phase detector; 1, sinusoidal phase detector

	Returns

	theta_hat = Output phase estimate of the input theta in radians,
ev = VCO control voltage,
phi = phase error = theta - theta_hat

Notes

Alternate input in place of natural frequency, fn, in Hz is
the noise equivalent bandwidth Bn in Hz.

Mark Wickert, April 2007 for ECE 5625/4625
Modified February 2008 and July 2014 for ECE 5675/4675
Python version August 2014

	
sk_dsp_comm.synchronization.PLL_cbb(x, fs, loop_type, Kv, fn, zeta)

	Baseband Analog PLL Simulation Model

	Parameters

	
	x – input phase deviation in radians

	fs – sampling rate in sample per second or Hz

	loop_type – 1, first-order loop filter F(s)=K_LF; 2, integrator
with lead compensation F(s) = (1 + s tau2)/(s tau1),
i.e., a type II, or 3, lowpass with lead compensation
F(s) = (1 + s tau2)/(1 + s tau1)

	Kv – VCO gain in Hz/v; note presently assume Kp = 1v/rad
and K_LF = 1; the user can easily change this

	fn – Loop natural frequency (loops 2 & 3) or cutoff
frequency (loop 1)

	zeta – Damping factor for loops 2 & 3

	Returns

	theta_hat = Output phase estimate of the input theta in radians,
ev = VCO control voltage,
phi = phase error = theta - theta_hat

Mark Wickert, April 2007 for ECE 5625/4625
Modified February 2008 and July 2014 for ECE 5675/4675
Python version August 2014

	
sk_dsp_comm.synchronization.phase_step(z, Ns, p_step, Nstep)

	Create a one sample per symbol signal containing a phase rotation
step Nsymb into the waveform.

	Parameters

	
	z – complex baseband signal after matched filter

	Ns – number of sample per symbol

	p_step – size in radians of the phase step

	Nstep – symbol sample location where the step turns on

	Returns

	the one sample symbol signal containing the phase step

Mark Wickert July 2014

	
sk_dsp_comm.synchronization.time_step(z, Ns, t_step, Nstep)

	Create a one sample per symbol signal containing a phase rotation
step Nsymb into the waveform.

	Parameters

	
	z – complex baseband signal after matched filter

	Ns – number of sample per symbol

	t_step – in samples relative to Ns

	Nstep – symbol sample location where the step turns on

	Returns

	the one sample per symbol signal containing the phase step

Mark Wickert July 2014

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sk_dsp_comm	

 	
 	
 sk_dsp_comm.coeff2header	

 	
 	
 sk_dsp_comm.digitalcom	

 	
 	
 sk_dsp_comm.fec_conv	

 	
 	
 sk_dsp_comm.fir_design_helper	

 	
 	
 sk_dsp_comm.iir_design_helper	

 	
 	
 sk_dsp_comm.multirate_helper	

 	
 	
 sk_dsp_comm.pyaudio_helper	

 	
 	
 sk_dsp_comm.rtlsdr_helper	

 	
 	
 sk_dsp_comm.sigsys	

 	
 	
 sk_dsp_comm.synchronization	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	
 	am_rx() (in module sk_dsp_comm.sigsys)

 	am_rx_BPF() (in module sk_dsp_comm.sigsys)

 	
 	am_tx() (in module sk_dsp_comm.sigsys)

 	available_devices() (in module sk_dsp_comm.pyaudio_helper)

 	AWGN_chan() (in module sk_dsp_comm.digitalcom)

B

 	
 	bandpass_order() (in module sk_dsp_comm.fir_design_helper)

 	bandstop_order() (in module sk_dsp_comm.fir_design_helper)

 	binary() (in module sk_dsp_comm.fec_conv)

 	biquad2() (in module sk_dsp_comm.sigsys)

 	bit_errors() (in module sk_dsp_comm.digitalcom)

 	(in module sk_dsp_comm.sigsys)

 	
 	bm_calc() (sk_dsp_comm.fec_conv.fec_conv method)

 	BPSK_BEP() (in module sk_dsp_comm.digitalcom)

 	BPSK_tx() (in module sk_dsp_comm.digitalcom)

 	(in module sk_dsp_comm.sigsys)

C

 	
 	CA_code_header() (in module sk_dsp_comm.coeff2header)

 	cascade_filters() (in module sk_dsp_comm.sigsys)

 	cb_active_plot() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	chan_est_equalize() (in module sk_dsp_comm.digitalcom)

 	CIC() (in module sk_dsp_comm.sigsys)

 	complex2wav() (in module sk_dsp_comm.rtlsdr_helper)

 	
 	conv_encoder() (sk_dsp_comm.fec_conv.fec_conv method)

 	conv_integral() (in module sk_dsp_comm.sigsys)

 	conv_Pb_bound() (in module sk_dsp_comm.fec_conv)

 	conv_sum() (in module sk_dsp_comm.sigsys)

 	cpx_AWGN() (in module sk_dsp_comm.sigsys)

 	cruise_control() (in module sk_dsp_comm.sigsys)

D

 	
 	DD_carrier_sync() (in module sk_dsp_comm.synchronization)

 	deci24() (in module sk_dsp_comm.sigsys)

 	delta_eps() (in module sk_dsp_comm.sigsys)

 	depuncture() (sk_dsp_comm.fec_conv.fec_conv method)

 	dimpulse() (in module sk_dsp_comm.sigsys)

 	discrim() (in module sk_dsp_comm.rtlsdr_helper)

 	dn() (sk_dsp_comm.multirate_helper.multirate_FIR method)

 	(sk_dsp_comm.multirate_helper.multirate_IIR method)

 	(sk_dsp_comm.multirate_helper.rate_change method)

 	
 	downsample() (in module sk_dsp_comm.sigsys)

 	drect() (in module sk_dsp_comm.sigsys)

 	DSP_callback_tic() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	DSP_callback_toc() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	DSP_capture_add_samples() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	DSP_capture_add_samples_stereo() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	DSP_io_stream (class in sk_dsp_comm.pyaudio_helper)

 	dstep() (in module sk_dsp_comm.sigsys)

E

 	
 	env_det() (in module sk_dsp_comm.sigsys)

 	ex6_2() (in module sk_dsp_comm.sigsys)

 	
 	eye_plot() (in module sk_dsp_comm.digitalcom)

 	(in module sk_dsp_comm.sigsys)

F

 	
 	farrow_resample() (in module sk_dsp_comm.digitalcom)

 	fec_conv (class in sk_dsp_comm.fec_conv)

 	filter() (sk_dsp_comm.multirate_helper.multirate_FIR method)

 	(sk_dsp_comm.multirate_helper.multirate_IIR method)

 	FIR_fix_header() (in module sk_dsp_comm.coeff2header)

 	FIR_header() (in module sk_dsp_comm.coeff2header)

 	fir_iir_notch() (in module sk_dsp_comm.sigsys)

 	fir_remez_bpf() (in module sk_dsp_comm.fir_design_helper)

 	fir_remez_bsf() (in module sk_dsp_comm.fir_design_helper)

 	fir_remez_hpf() (in module sk_dsp_comm.fir_design_helper)

 	fir_remez_lpf() (in module sk_dsp_comm.fir_design_helper)

 	firwin_bpf() (in module sk_dsp_comm.fir_design_helper)

 	firwin_kaiser_bpf() (in module sk_dsp_comm.fir_design_helper)

 	firwin_kaiser_bsf() (in module sk_dsp_comm.fir_design_helper)

 	firwin_kaiser_hpf() (in module sk_dsp_comm.fir_design_helper)

 	
 	firwin_kaiser_lpf() (in module sk_dsp_comm.fir_design_helper)

 	firwin_lpf() (in module sk_dsp_comm.fir_design_helper)

 	freq_resp() (sk_dsp_comm.multirate_helper.multirate_FIR method)

 	(sk_dsp_comm.multirate_helper.multirate_IIR method)

 	freqz_cas() (in module sk_dsp_comm.iir_design_helper)

 	freqz_resp() (in module sk_dsp_comm.multirate_helper)

 	freqz_resp_cas_list() (in module sk_dsp_comm.iir_design_helper)

 	freqz_resp_list() (in module sk_dsp_comm.coeff2header)

 	(in module sk_dsp_comm.fir_design_helper)

 	(in module sk_dsp_comm.iir_design_helper)

 	from_wav() (in module sk_dsp_comm.sigsys)

 	fs_approx() (in module sk_dsp_comm.sigsys)

 	fs_coeff() (in module sk_dsp_comm.sigsys)

 	fsk_BEP() (in module sk_dsp_comm.rtlsdr_helper)

 	ft_approx() (in module sk_dsp_comm.sigsys)

G

 	
 	get_LR() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	
 	get_samples() (sk_dsp_comm.pyaudio_helper.loop_audio method)

 	GMSK_bb() (in module sk_dsp_comm.digitalcom)

H

 	
 	hard_Pk() (in module sk_dsp_comm.fec_conv)

I

 	
 	IIR_bpf() (in module sk_dsp_comm.iir_design_helper)

 	IIR_bsf() (in module sk_dsp_comm.iir_design_helper)

 	IIR_hpf() (in module sk_dsp_comm.iir_design_helper)

 	IIR_lpf() (in module sk_dsp_comm.iir_design_helper)

 	
 	IIR_sos_header() (in module sk_dsp_comm.coeff2header)

 	in_out_check() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	interactive_stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	interp24() (in module sk_dsp_comm.sigsys)

L

 	
 	line_spectra() (in module sk_dsp_comm.sigsys)

 	lms_ic() (in module sk_dsp_comm.sigsys)

 	loop_audio (class in sk_dsp_comm.pyaudio_helper)

 	
 	lowpass_order() (in module sk_dsp_comm.fir_design_helper)

 	lp_samp() (in module sk_dsp_comm.sigsys)

 	lp_tri() (in module sk_dsp_comm.sigsys)

M

 	
 	m_seq() (in module sk_dsp_comm.sigsys)

 	mono_FM() (in module sk_dsp_comm.rtlsdr_helper)

 	MPSK_bb() (in module sk_dsp_comm.digitalcom)

 	multirate_FIR (class in sk_dsp_comm.multirate_helper)

 	
 	multirate_IIR (class in sk_dsp_comm.multirate_helper)

 	mux_pilot_blocks() (in module sk_dsp_comm.digitalcom)

 	my_psd() (in module sk_dsp_comm.digitalcom)

 	(in module sk_dsp_comm.sigsys)

N

 	
 	NDA_symb_sync() (in module sk_dsp_comm.synchronization)

 	
 	NRZ_bits() (in module sk_dsp_comm.sigsys)

 	NRZ_bits2() (in module sk_dsp_comm.sigsys)

O

 	
 	OA_filter() (in module sk_dsp_comm.sigsys)

 	OFDM_rx() (in module sk_dsp_comm.digitalcom)

 	
 	OFDM_tx() (in module sk_dsp_comm.digitalcom)

 	OS_filter() (in module sk_dsp_comm.sigsys)

P

 	
 	pack_LR() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	PCM_decode() (in module sk_dsp_comm.digitalcom)

 	PCM_encode() (in module sk_dsp_comm.digitalcom)

 	peaking() (in module sk_dsp_comm.sigsys)

 	phase_step() (in module sk_dsp_comm.synchronization)

 	pilot_PLL() (in module sk_dsp_comm.rtlsdr_helper)

 	
 	PLL1() (in module sk_dsp_comm.synchronization)

 	PLL_cbb() (in module sk_dsp_comm.synchronization)

 	PN_gen() (in module sk_dsp_comm.sigsys)

 	position_CD() (in module sk_dsp_comm.sigsys)

 	prin_alias() (in module sk_dsp_comm.sigsys)

 	puncture() (sk_dsp_comm.fec_conv.fec_conv method)

Q

 	
 	Q_fctn() (in module sk_dsp_comm.digitalcom)

 	QAM_bb() (in module sk_dsp_comm.digitalcom)

 	QAM_SEP() (in module sk_dsp_comm.digitalcom)

 	
 	QPSK_bb() (in module sk_dsp_comm.digitalcom)

 	QPSK_BEP() (in module sk_dsp_comm.digitalcom)

 	QPSK_rx() (in module sk_dsp_comm.digitalcom)

 	QPSK_tx() (in module sk_dsp_comm.digitalcom)

R

 	
 	rate_change (class in sk_dsp_comm.multirate_helper)

 	rc_imp() (in module sk_dsp_comm.digitalcom)

 	(in module sk_dsp_comm.sigsys)

 	
 	rect() (in module sk_dsp_comm.sigsys)

 	rect_conv() (in module sk_dsp_comm.sigsys)

 	RZ_bits() (in module sk_dsp_comm.digitalcom)

S

 	
 	scatter() (in module sk_dsp_comm.digitalcom)

 	(in module sk_dsp_comm.sigsys)

 	sccs_bit_sync() (in module sk_dsp_comm.rtlsdr_helper)

 	simple_SA() (in module sk_dsp_comm.sigsys)

 	simpleQuant() (in module sk_dsp_comm.sigsys)

 	sinusoidAWGN() (in module sk_dsp_comm.sigsys)

 	sk_dsp_comm.coeff2header (module)

 	sk_dsp_comm.digitalcom (module)

 	sk_dsp_comm.fec_conv (module)

 	sk_dsp_comm.fir_design_helper (module)

 	sk_dsp_comm.iir_design_helper (module)

 	sk_dsp_comm.multirate_helper (module)

 	sk_dsp_comm.pyaudio_helper (module)

 	sk_dsp_comm.rtlsdr_helper (module)

 	
 	sk_dsp_comm.sigsys (module)

 	sk_dsp_comm.synchronization (module)

 	soft_Pk() (in module sk_dsp_comm.fec_conv)

 	soi_snoi_gen() (in module sk_dsp_comm.sigsys)

 	sos_cascade() (in module sk_dsp_comm.iir_design_helper)

 	sos_zplane() (in module sk_dsp_comm.iir_design_helper)

 	splane() (in module sk_dsp_comm.sigsys)

 	sqrt_rc_imp() (in module sk_dsp_comm.digitalcom)

 	(in module sk_dsp_comm.sigsys)

 	step() (in module sk_dsp_comm.sigsys)

 	stereo_FM() (in module sk_dsp_comm.rtlsdr_helper)

 	stop() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	stream_stats() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	strips() (in module sk_dsp_comm.digitalcom)

T

 	
 	ten_band_eq_filt() (in module sk_dsp_comm.sigsys)

 	ten_band_eq_resp() (in module sk_dsp_comm.sigsys)

 	thread_stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method)

 	time_delay() (in module sk_dsp_comm.digitalcom)

 	time_step() (in module sk_dsp_comm.synchronization)

 	to_wav() (in module sk_dsp_comm.sigsys)

 	
 	tobin() (in module sk_dsp_comm.digitalcom)

 	traceback_plot() (sk_dsp_comm.fec_conv.fec_conv method)

 	trellis_branches (class in sk_dsp_comm.fec_conv)

 	trellis_nodes (class in sk_dsp_comm.fec_conv)

 	trellis_paths (class in sk_dsp_comm.fec_conv)

 	trellis_plot() (sk_dsp_comm.fec_conv.fec_conv method)

 	tri() (in module sk_dsp_comm.sigsys)

U

 	
 	unique_cpx_roots() (in module sk_dsp_comm.iir_design_helper)

 	(in module sk_dsp_comm.sigsys)

 	up() (sk_dsp_comm.multirate_helper.multirate_FIR method)

 	(sk_dsp_comm.multirate_helper.multirate_IIR method)

 	(sk_dsp_comm.multirate_helper.rate_change method)

 	
 	upsample() (in module sk_dsp_comm.sigsys)

V

 	
 	viterbi_decoder() (sk_dsp_comm.fec_conv.fec_conv method)

W

 	
 	wav2complex() (in module sk_dsp_comm.rtlsdr_helper)

X

 	
 	xcorr() (in module sk_dsp_comm.digitalcom)

Z

 	
 	zplane() (in module sk_dsp_comm.sigsys)

 	(sk_dsp_comm.multirate_helper.multirate_FIR method)

 	(sk_dsp_comm.multirate_helper.multirate_IIR method)

scipy-mathjax

Scipy-variant of stripped-down Mathjax.

Only keep TeX-AMS input with SVG + stix-web output.

Run rebuild.sh to rebuild the files.

Note that this requires node.js npm being available.

Based on https://github.com/mathjax/MathJax-grunt-cleaner.git

scipy-mathjax

Scipy-variant of stripped-down Mathjax.

Only keep TeX-AMS input with SVG + stix-web output.

Run rebuild.sh to rebuild the files.

Note that this requires node.js npm being available.

Based on https://github.com/mathjax/MathJax-grunt-cleaner.git

scipy-mathjax

Scipy-variant of stripped-down Mathjax.

Only keep TeX-AMS input with SVG + stix-web output.

Run rebuild.sh to rebuild the files.

Note that this requires node.js npm being available.

Based on https://github.com/mathjax/MathJax-grunt-cleaner.git

 _images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_3_0.png
I I (I
x.(t) —| ADC £ g|!| | Frame-Based | ! 38 »m—:—» Q)
: %gl'(\l! DSP ‘N;n 8‘%
% (t) —»| ADC P& |11 Callback [¥, |5 & »m—'»y,(t)
_ : 'wc—) T vc—): :
Channels ~~~~~~ """ 777 : LT T T Channels
1or2 ! l 1or2
| ==) -—— -
1 | Globals ipython Wldgets :
: for DSP for Algorithm | !
: States Attribute Ctrl. :
|

Jupyter Notebook Code

- e e = e e e e e e e = e = ==

_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_49_0.png
Start Streaming Stop Streaming

Status: Stopped

Panning (%) 44.70

_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_44_0.png
Status: Stopped

L Gain R Gain

0.74 0.75

_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_55_0.png
Start Streaming Stop Streaming

Status: Stopped

Gain 100 Hz 1000 Hz 8000 Hz

0.73 20.00 10.00 -10.00

_images/sigsys-10.png
10

_images/sigsys-1.png
10
05
00

-10

-0

400 600 800 1000

200

_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_37_0.png
Normalized Amplitude

0.6

0.4

0.2

o
o

|
o
N

I
©
N

|
o
o

250

A Portion of the capture buffer

500 750 1000 1250 1500
Time (ms)

1750 2000

_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_35_0.png
Status: Stopped

_images/nb_examples_Multirate_Processing_6_0.png
Table 1: Classes and functions in multirate_helper.py.

Type

Class/Method/Function

module class: multirate_helper.rate_change

construc- | rc_obj = rate_change(M_change = 12,fcutoff=0.9,N_filt_order=8,
tor ftype="butter')
fcutoff is normalized to the sampling rate, e.g., fs_out/M_change for interpo-
lation and fs_in/M_change for decimation.
ftype may also be 'chebyl' where the ripple is fixed at 0.05 dB.
interpo- | Y = rc_obj.up()
late
x[n] —)[7]
fs_in fcutoff = :S_Plit,v‘: h
fs_out/2/M_change fs_out s_In*M_change
decimate |y = rc_obj.dn(x)

—y[n]
fs_out=
fs_in/M_change

x[n]

fs_in fs i fcutoff =
s_in .
fs_in/2/M_change

Notes:

_images/nb_examples_Multirate_Processing_4_0.png
Decimator: mrh.multirate_IIR Or FIR

1
: FIR/IIR Digital Filter
x[n] !
1 > Ideal filter
7. ! response
. -/ (kH?)
0f=4 [f/2=48

p'Ie(xaa,lZ):

signal.lfilter(b,a,x_up)
i’gna'l .sosfilt(sos,x_up)

or

0

mr_obj = mrh.multirate_IIR(so0s)

y = mr_obj.dn(x,12)

1
x,,[n] :

| vinl
—> 12—
ss.downsam- ™

_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_16_0.png
Status: Stopped

_images/nb_examples_Real-Time-DSP_Using_pyaudio_helper_and_ipywidgets_31_0.png
Status: Stopped

_images/nb_examples_Multirate_Processing_3_0.png
Interpolator: mrh.multirate_IIR Or FIR

1
: x, [nl[| FIR/IR Digital Filter
x[n] !
1 > . Ideal filter
7. ! T12 ” response
"™ | ss.upsam- L/ (kHz)
ple(x,12) |[0/=4 [f/2=48

signal.1filter(b,a,x_up) or
signal.sosfilt(sos,x_up)

mr_obj =
y = mr_ob

mrh.mﬁt'i rate_IIR(so0s)
j.up(x,12)

yin]
j;,om

_images/sigsys-17.png
PR
TETTT

(8P) Aisuaa |endads Jamod

Frequency (Hz)

_images/sigsys-18_01_00.png
° o moeow
(N B

(8P) Aisuaa |endads Jamod

10° 10¢ 10°
Frequency (Hz)

107

10!

_images/sigsys-18_00_00.png
o =W o w o

(8p) Ausuaq [en>ads Jamod

10° 10¢ 10°
Frequency (Hz)

107

10!

_images/sigsys-2.png
10

05

00

50

100

150

200

250

300

_images/sigsys-19.png
10

08

06

04

02

00

20

60

_images/sigsys-20_01_00.png
10

08

06

04

02

00

_images/sigsys-20_00_00.png
10

08

06

04

02

00

_images/sigsys-22.png
b)

10

05

s =
° 9

aumeipend

00 05 10 15
In-Phase.

-10 -05

-15

_images/sigsys-21.png
10

15

20

_images/sigsys-23_00_00.png
Power Spectral Density (dB)

00

01 o2 03 04
Normalized Frequency w/2m

05

_images/sigsys-12_01_00.png
Imaginary Part

100

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

Pole-Zero Plot

d

t

05

00
Real Part

05

10

_images/sigsys-12_00_00.png
Imaginary Part

100

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

Pole-Zero Plot

d

t

05 00
Real Part

05

10

_images/sigsys-14_00_00.png
Exact Waveform

10

08

06

xolt)

04

02

00

—20 -15 -10 —05 00 05 10 15 20
Time (s)

_images/sigsys-13.png
Magnitude

0200

0175

0150

0125

0100

0075

0.050

0025

0.000

-300

200 -100

Frequer\(y (sz

300

_images/sigsys-14_02_00.png
Xo(A|

Approximation Spectrum Magnitude

10

08

06

04

02

00

-100 -75 -50 -25 00 25 50 75 100
Frequency (Hz)

_images/sigsys-14_01_00.png
IXoe(f|

Exact (Theory) Spectrum Magnitude

10

08

06

04

02

00

-100 -75 -50 -25 00 25
Frequency (Hz)

5.0

75

10.0

_images/sigsys-15_01_00.png
Phase (rad)

0 100 200

Frequency (Hz)

—200 -100

_images/sigsys-15_00_00.png
10

08

Magnitude
3

S

02

00

—200 -100

Frequer\(y (H2)

_images/sigsys-16_01_00.png
spnuben wnads

Frequency in Hz

_images/sigsys-16_00_00.png
10

spnuben wnads

02

20

20

—40

Frequency in Hz

_images/sigsys-11.png
Amplitude

2.0

15

10

05

00

Eye Plot

00

25

5.0

75 100 125
Time Index - n

150

175

200

_images/digitalcom-2_00_00.png
°
i

aimeipend

T

-2

-6 -4

In-Phase.

_images/digitalcom-2_01_00.png
anglelHIk] (rad)

15

10

[HIK]|

0.00

-0.25

Channel Estimates Hik] Over Selected Carrier Indices

o 2 4 & 8 10 12 1.
Channel Estimate Update Index

o 2 4 6 8 10 12 1.
Channel Estimate Update Index

_images/digitalcom-1.png
Quadrature

s &

Lo
Lol oo
568G

_images/digitalcom-10.png
100

075

050

025

0.00

-0.25

20

60

_images/digitalcom-2_01_01.png
> hes

e 28 28 2K)

A IR
LALIEAE

° T

aumeipend

_images/digitalcom-3.png
Power Spectral Density (dB/Hz)

04 02 00 02
Normalized Frequency (w/(2m) = fif,)

04

_images/digitalcom-7.png

_images/digitalcom-8.png
10

08

06

04

02

00

20

60

_images/digitalcom-5.png
Amplitude

2.0

15

10

05

00

Eye Plot

00

25

5.0

75 100 125
Time Index - n

150

175

200

_images/digitalcom-6.png
Real Signal Amplitude

10

05

00

Impact of Asynchronous Sampling

25

50 75 100 125 150 175 200
Symbol Rate Normalized Time

digitalcom-2_01_01.png
> hes

e 28 28 2K)

A IR
LALIEAE

° T

aumeipend

_images/fec_conv-2.png
State Index 0 to 2%~ 2

Survivor Paths Traced Back From Al 4 States

5 -4 -3 -2
Traceback Symbol Periods

_images/fec_conv-3.png
-State Index

Rate 1/2, K = 3 Trellis

02

[06
One Symbol Transition

08

10

digitalcom-2_00_00.png
°
i

aimeipend

T

-2

-6 -4

In-Phase.

_images/digitalcom-9.png
b)

10

05

s =
° 9

aumeipend

00 05 10 15
In-Phase.

-10 -05

-15

digitalcom-2_01_00.png
anglelHIk] (rad)

15

10

[HIK]|

0.00

-0.25

Channel Estimates Hik] Over Selected Carrier Indices

o 2 4 & 8 10 12 1.
Channel Estimate Update Index

o 2 4 6 8 10 12 1.
Channel Estimate Update Index

_images/fec_conv-1.png
Symbol Error Probability

—— Uncoded BPSK
=172,
=3/4 (punc),

. Soft

. Soft

6 8
ElNo (dB)

10

12

_images/logo.png
222 ASIEGOnin

[)
|

v | - o
M”Y oo

_static/up-pressed.png

_static/up.png

_images/digitalcom-4.png
10
08
06
04
02
00

400 600 800 1000

200

_images/nb_examples_FIR_and_IIR_Filter_Design_5_0.png
Table 1: FIR filter design functions in fir_design_helper.py.

Type

FIR Filter Design Functions

Kasier Window

Lowpass | h—FIR = firwin_kaiser_lpf(f_pass, f_stop, d_stop, fs = 1.0, N_bump=0)

Highpass h_FIR = firwin_kaiser_hpf(f_stop, f_pass, d_stop, fs = 1.0, N_bump=0)

Bandpass | h-FIR = firwin_kaiser_bpf(f_stopl, f_passl, f_pass2, f_stop2, d_stop,
fs = 1.0, N_bump=0)

Bandstop h_FIR = firwin_kaiser_bsf(f_stopl, f_passl, f_pass2, f_stop2, d_stop,

fs = 1.0, N_bump=0)

Equiripple Approximation

Lowpass | h—_FIR = fir_remez_Tpf(f_pass, f_stop, d_pass, d_stop, fs = 1.0,
N_bump=5)

Highpass h_FIR = fir_remez_hpf(f_stop, f_pass, d_pass, d_stop, fs = 1.0,
N_bump=5)

Bandpass | h_FIR = fir_remez_bpf(f_stopl, f_passl, f_pass2, f_stop2, d_pass,
d_stop, fs = 1.0, N_bump=5)

Bandstop | h_FIR = fir_remez_bsf(f_passl, f_stopl, f_stop2, f_pass2, d_pass,
d_stop, fs = 1.0, N_bump=5)

Support Function: Compare Designs

Plot a freqz_resp_list([b],a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4))

List of where [b] is a list coefficient arrays and mode can be: 'dB', 'phase’ in radi-

Designs ans, 'groupdelay_s' in samples or 'groupdelay_t' in seconds

The optional N_bump argument allows the filter order to be bumped up or down by an integer value in order

to fine tune the design. Making changes to the stopband gain main also be helpful in fine tuning. Note also
that the Kaiser bandstop filter order is constrained to be even (an odd number of taps).

_images/nb_examples_Multirate_Processing_16_0.png
Table 2: Classes and functions in multirate_helper.py (cont.).

Type

Class/Method/Function

module class: multirate_helper.multirate_FIR

construc- | mr_obj = multirate_FIR(b)
tor b : user supplied FIR filter that meets the desired filtering,
interpolation, or decimation needs; nominally design filter for
fc = (fs/2)/M_change

filter y = mr_obj.filter(x)

x[n] —>)]

fs_in fs_out=fs_in

fs_in =fs_out

interpo- | y = up(x,L_change = 12)
late

x[n] —> y[n]

fs in fs_out=

- fs_out fs_in*M_change

decimate |y = dn(x,M_change = 12)

x[n] —> y[n]

fs_in fs_out =fs_in/M

fs_in
plot H mr_obj.freq_resp(mode = 'dB', fs = 8000, ylim = [-100,2])
mode : 'dB' magnitude, 'phase' in radians, or
"groupdelay_s' in samples and 'groupdelay_t' in sec,
all versus frequency in Hz

plot PZ mr_obj.zplane(auto_scale=True,size=2,detect_mult=True,to1=0.001)
function:
plot H freqz_resp(b,a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4))

mode : 'dB' magnitude, 'phase' in radians, or
"groupdelay_s' in samples and 'groupdelay_t' in sec,
all versus frequency in Hz

Notes:

_images/nb_examples_Multirate_Processing_24_0.png
Table 3: Classes and functions in multirate_helper.py (cont.).

Type Class/Method/Function

module class: multirate_helper.multirate_IIR

construc- | mr_obj = multirate_IIR(sos)

tor b : user supplied IIR filter that meets the desired filtering,
interpolation, or decimation needs; nominally design filter for
fc = (fs/2)/M_change

filter y = mr_obj.filter(x)

x[n] —> J{n]

fs_in fs_out=fs_in

fs_in =fs_out

interpo- y = up(x,L_change = 12)
late

x[n] —y[n]

fs in fs_out=

- fs_out fs_in*M_change

decimate | y = dn(x,M_change = 12)

x[n] —)[n]

fs_in fs_out =fs_in/M

fs_in

plotH mr_obj.freq_resp(mode= 'dB', fs = 8000, ylim = [-100,2])

mode : 'dB' magnitude, 'phase’ in radians, or
"groupdelay_s"' in samples and 'groupdelay_t' in sec,
all versus frequency in Hz

plot PZ mr_obj.zplane(auto_scale=True,size=2,detect_mult=True,to1=0.001)

module function:

plot H freqz_resp(b,a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4))
from b, a | mode : "dB' magnitude, 'phase’ in radians, or

"groupdelay_s"' in samples and 'groupdelay_t' in sec,

all versus frequency in Hz

Notes:

_images/nb_examples_FIR_and_IIR_Filter_Design_28_0.png
Table 2: IIR filter design functions in iir_design_helper.py and key support functions.

Type IIR Filter Design Functions”

Transfer Function (b,a) and SOS

Lowpass | b, a, sos = IIR Tpf(f_pass, f_stop, Ripple_pass, Atten_stop,
(bﬂinear) fs = 100, ftype = 'butter")
ftype may be 'butter’, 'butter'chebyl’, 'cheby2', or 'elTliptic’

Highpass | b, a, sos = IIR hpf(f_stop, f_pass, Ripple_pass, Atten_stop,
(bﬂinear) fs = 100, ftype = 'butter")
ftype may be 'butter’, 'butter'chebyl', 'cheby2', or 'elliptic’

Bandpass b, a, sos = IIR_bpf(f_stopl, f_passl, f_pass2, f_stop2, Ripple_pass,
(bilinear) Atten_stop, fs = 1.00, ftype = 'butter')
ftype may be 'butter’, 'butter'chebyl', 'cheby2', or 'elliptic’

Bandstop | b, a, sos = IIR bsf(f_passl, f_stopl, f_stop2, f_pass2, Ripple_pass,
(bilinear) Atten_stop, fs = 1.00, ftype = 'butter')
ftype may be 'butter’, 'butter'chebyl', 'cheby2', or 'elliptic’

Support Functions

SOS list | freqgz_resp_cas_list([sos],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4))
plot where: [sos] is a list coefficient arrays and mode can be: 'dB', 'phase’ in radi-

ans, 'groupdelay_s' in samples or 'groupdelay_t' in seconds

SOS w, Hcas = freqz_cas(sos,w)
freqz freqz for a single sos section

SOS plot | sos_zplane(sos,auto_scale=True,size=2,tol = 0.001)
pole-zero | More accurate root factoring results in a more accurate pole-zero plot.

Cascade sos = sos_cascade(sosl,sos2)
SOS Create a new sos by cascading sos1 with sos2

“These functions wrap scipy.signal.iirdesign() to provide an interface more consistent with the FIR
design functions found in the module fir_design_helper.py. The function unique_cpx_roots() is
used to mark repeated poles and zeros in sos_zplane. Note: All critical frequencies given in increasing
order.

_images/nb_examples_FIR_and_IIR_Filter_Design_3_0.png
£4n 0 NIRRT
TEGR RINAIRANEINRIRY
Passband Lowpass
)
z
£
@©
O
Stopband
A1 _ _ _ _] I N
s
ATATATATATAVATATATA RS
0 A2 1./2
EdB A A i N S N S S S S S S S e
-eg| I >>>>>>>;»?»»»»»;»»»»;
Passband
g Highpass
£
©
O]
Stopband
— A PRI RN
IYAYAYAYATATH o
0 77 7 ~ Freq. (Hz)
SdB \\\\\Q\Q\k\i\i\i\k\i\i\i\k\i\\\
—SdBO _____ EEEaTEEs
Passband
o Bandpass
Z
£
©
O]
Stopband Stopband
_ AS] N
[MY ..., o
0 f;lf})l f;)zf;z /2
€GB [ruiimmssiinaen S
I~ -——————— - —
—€4B ARNRARA R ARRRRRRRANARAN
Passband Passband
g Bandstop
£
Figure: 1 General amplitude S
response requirements for the
. Stopband
lowpass, highpass, bandpass,
and bandstop filter types.

. Freq. (H
2req(z)

_images/nb_examples_FIR_and_IIR_Filter_Design_26_0.png
Figure 2: General ampli-
tude response requirements for
the lowpass, highpass, band-
pass, and bandstop IIR filter

types.

0
—€
dB
Passband Lowpass
o
=
£
©
O
Stopband
A4 _ o N
Freq. (Hz)
0 o Js f./2
0 _____ ~ _\\‘\‘\\\\‘\‘\\\\‘\\\\‘\‘\\\\‘\‘\\\\‘\\\\\\\\\\\\\\\\\\\\\‘;
—€gg |] I NN
Passband
e Highpass
£
®©
O
pband
EOTRRARERRRNN
—A,
L— Freq. (Hz)
0 P fp 172
U il wlbel \v e gy
—€48 ASASNSAN
Passband
o Bandpass
z
£
©
O]
Stopband Stopband
2
A,
Freq. (Hz)
0 S Pl fp2st 172
e T S T R
—ggp [N T T T T T
Passband Passband
@ Bandstop
£
©
]
Stopband
ERRNRRRRNRRRN
A4 — — — —|—
L Freq. (Hz)
0 f rl fsl st fp2 fs/ 2

sigsys-12_00_00.png
Imaginary Part

100

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

Pole-Zero Plot

d

t

05 00
Real Part

05

10

sigsys-12_01_00.png
Imaginary Part

100

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

Pole-Zero Plot

d

t

05

00
Real Part

05

10

sigsys-14_00_00.png
Exact Waveform

10

08

06

xolt)

04

02

00

—20 -15 -10 —05 00 05 10 15 20
Time (s)

sigsys-14_01_00.png
IXoe(f|

Exact (Theory) Spectrum Magnitude

10

08

06

04

02

00

-100 -75 -50 -25 00 25
Frequency (Hz)

5.0

75

10.0

sigsys-14_02_00.png
Xo(A|

Approximation Spectrum Magnitude

10

08

06

04

02

00

-100 -75 -50 -25 00 25 50 75 100
Frequency (Hz)

nav.xhtml

 Table of Contents

 		
 Welcome to scikit-dsp-comm’s documentation!

 		
 Jupyter Notebook Examples

 		
 Introduction to Python and the Jupyter Notebook

 		
 Rectangle and Triangle Pulses Defined

 		
 Energy and Power Signals

 		
 Fourier Series and Line Spectra Plotting

 		
 Fourier Transforms

 		
 Convolution

 		
 Spectrum of PN Sequence (exact)

 		
 Spectrum of PN Sequence (approx)

 		
 Spectral Containment Bandwidth (text problem 2.55)

 		
 Filter Analysis

 		
 Filter Design Using the Helper Modules

 		
 Design From Amplitude Response Requirements

 		
 Linear Phase FIR Filter Design

 		
 Traditional IIR Filter Design using the Bilinear Transform

 		
 Multirate Signal Processing Using multirate_helper

 		
 Introduction

 		
 Real-Time Loop Through

 		
 Widgets Examples

 		
 coeff2header

 		
 digitalcom

 		
 fec_conv

 		
 fir_design_helper

 		
 iir_design_helper

 		
 multirate_helper

 		
 optfir

 		
 pyaudio_helper

 		
 rtlsdr_helper

 		
 sigsys

 		
 synchronization

sigsys-16_00_00.png
10

spnuben wnads

02

20

20

—40

Frequency in Hz

sigsys-16_01_00.png
spnuben wnads

Frequency in Hz

sigsys-15_00_00.png
10

08

Magnitude
3

S

02

00

—200 -100

Frequer\(y (H2)

sigsys-15_01_00.png
Phase (rad)

0 100 200

Frequency (Hz)

—200 -100

sigsys-20_00_00.png
10

08

06

04

02

00

sigsys-20_01_00.png
10

08

06

04

02

00

sigsys-18_00_00.png
o =W o w o

(8p) Ausuaq [en>ads Jamod

10° 10¢ 10°
Frequency (Hz)

107

10!

sigsys-18_01_00.png
° o moeow
(N B

(8P) Aisuaa |endads Jamod

10° 10¢ 10°
Frequency (Hz)

107

10!

sigsys-23_00_00.png
Power Spectral Density (dB)

00

01 o2 03 04
Normalized Frequency w/2m

05

sigsys-23_01_00.png
Power Spectral Density (dB)

00

01 02 03 o4
Normalized Frequency w/2m

05

sigsys-24_00_00.png
Power Spectral Density (dB)

0

1000

2000 3000
Frequency (Hz)

4000

5000

sigsys-26_01_00.png
10

08

06

04

02

00

sigsys-28_00_00.png
10

08

06

04

02

00

sigsys-24_01_00.png
Power Spectral Density (dB)

|

o

1000

2000 3000
Frequency (Hz)

4000

5000

sigsys-26_00_00.png
10

08

06

04

02

00

sigsys-3_01_00.png
°c 8 2 8 8
Y o§ OB §
(8p) Ayisuaq |espdads samod

400 600 800

Frequency (kHz)

200

sigsys-4_00_00.png
10

15

20

sigsys-28_01_00.png
10

08

06

04

02

00

sigsys-3_00_00.png
Imaginary Part

100

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

Pole-Zero Plot

S

05

00
Real Part

05

10

_static/logo.png
222 ASIEGOnin

[)
|

v | - o
M”Y oo

_static/file.png

_static/plus.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

sigsys-5_00_00.png
10

15

sigsys-5_01_00.png
15

10

05

00

sigsys-4_01_00.png
10

08

06

04

02

00

-100

-75

00

25

5.0

sigsys-8_00_00.png
10

08

06

04

02

00

sigsys-8_01_00.png
10

08

06

04

02

00

sigsys-7_00_00.png
10

08

06

04

02

00

sigsys-7_01_00.png
10

08

06

04

02

00

sigsys-9_00_00.png
10

08

06

04

02

00

sigsys-9_01_00.png
10

08

06

04

02

00

_images/sigsys-9_00_00.png
10

08

06

04

02

00

_static/ajax-loader.gif

_images/sigsys-9_01_00.png
10

08

06

04

02

00

_images/sigsys-3_01_00.png
°c 8 2 8 8
Y o§ OB §
(8p) Ayisuaq |espdads samod

400 600 800

Frequency (kHz)

200

_images/sigsys-4_01_00.png
10

08

06

04

02

00

-100

-75

00

25

5.0

_images/sigsys-4_00_00.png
10

15

20

_images/sigsys-5_01_00.png
15

10

05

00

_images/sigsys-5_00_00.png
10

15

_images/sigsys-7_00_00.png
10

08

06

04

02

00

_images/sigsys-6.png
10

_images/sigsys-8_00_00.png
10

08

06

04

02

00

_images/sigsys-7_01_00.png
10

08

06

04

02

00

_images/sigsys-8_01_00.png
10

08

06

04

02

00

_images/sigsys-24_00_00.png
Power Spectral Density (dB)

0

1000

2000 3000
Frequency (Hz)

4000

5000

_images/sigsys-23_01_00.png
Power Spectral Density (dB)

00

01 02 03 o4
Normalized Frequency w/2m

05

_images/sigsys-25.png
100

075

050

025

0.00

-0.25

20

60

_images/sigsys-24_01_00.png
Power Spectral Density (dB)

|

o

1000

2000 3000
Frequency (Hz)

4000

5000

_images/sigsys-26_01_00.png
10

08

06

04

02

00

_images/sigsys-26_00_00.png
10

08

06

04

02

00

_images/sigsys-28_00_00.png
10

08

06

04

02

00

_images/sigsys-27.png
Gain (dB)

Gain Set (dB)

Ten-Band Equalizer Frequency Response

10

10¢

Y A . A

o 1 2 3 4 5 & 7
Equalizer Band Number

_images/sigsys-3_00_00.png
Imaginary Part

100

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

Pole-Zero Plot

S

05

00
Real Part

05

10

_images/sigsys-28_01_00.png
10

08

06

04

02

00

