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CHAPTER 1

Readme

2 Chapter 1. Readme
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CHAPTER 2

scikit-dsp-comm

2.1 Background

The origin of this package comes from the writing the book Signals and Systems for Dummies, published
by Wiley in 2013. The original module for this book is named ssd.py. In scikit-dsp-comm this
module is renamed to sigsys.py to better reflect the fact that signal processing and communications
theory is founded in signals and systems, a traditional subject in electrical engineering curricula.

2.2 Package High Level Overview

This package is a collection of functions and classes to support signal processing and communications theory teaching
and research. The foundation for this package is scipy.signal. The code in particular currently runs under Python
2.7x and 3.6x.

We are striving for improved documentation, with examples. Minor bugs are being fixed. New features are planned,
in particular a GPS_helper module and additions to the synchronization module. There is also a desire to
improve the fec_conv to move develop rate 1/3 codes and the use of compiled code to improve performance

The real-time audio DSP capabilities of pyaudio_helper allow for two channel algorithm development with real-
time user control enabled by the ipywidgets when running in the Jupyter notebook.

Finally, there is a strong desire to utilize the real-time DSP capabilities of pyaudio_helper to allow real-time
streaming of complex baseband (IQ) signals from rtlsdr_helper through demodulation algorithms and out
through the Pyaudio interface.

There are presently ten modules that make up scikit-dsp-comm:

1. sigsys.py for basic signals and systems functions both continuous-time and discrete-time, including graphi-
cal display tools such as pole-zero plots, up-sampling and down-sampling.
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2. digitalcomm.py for digital modulation theory components, including asynchronous resampling and vari-
able time delay functions, both useful in advanced modem testing.

3. synchronization.py which contains phase-locked loop simulation functions and functions for carrier and
phase synchronization of digital communications waveforms.

4. fec_conv.py for the generation rate one-half convolutional codes and soft decision Viterbi algorithm decod-
ing, including trellis and trellis-traceback display functions.

5. fir_design_helper.py which for easy design of lowpass, highpass, bandpass, and bandstop filters using
the Kaiser window and equal-ripple designs, also includes a list plotting function for easily comparing magni-
tude, phase, and group delay frequency responses.

6. iir_design_helper.py which for easy design of lowpass, highpass, bandpass, and bandstop filters using
scipy.signal Butterworth, Chebyshev I and II, and elliptical designs, including the use of the cascade of second-
order sections (SOS) topology from scipy.signal, also includes a list plotting function for easily comparing of
magnitude, phase, and group delay frequency responses.

7. multirate.py that encapsulate digital filters into objects for filtering, interpolation by an integer factor, and
decimation by an integer factor.

8. coeff2header.py write C/C++ header files for FIR and IIR filters implemented in C/C++, using the cas-
cade of second-order section representation for the IIR case. This last module find use in real-time signal
processing on embedded systems, but can be used for simulation models in C/C++.

Presently the collection of modules contains about 125 functions and classes. The authors/maintainers are working to
get more detailed documentation in place.

2.2.1 Extras

This package contains the helper modules rtlsdr_helper, and pyaudio_helper which require the packages
pyrtlsdr and PyAudio. To use the full functionality of these helpers, install the package from the scikit-dsp-comm
folder as follows:

pip install -e .[helpers]

Installation is described in greater detail below.

1. pyaudio_helper.py wraps a class around the code required in PyAudio (wraps the C++ library
PortAudio) to set up a non-blocking audio input/output stream. The user only has to write the callback
function to implement real-time DSP processing using any of the input/output devices available on the platform.
This resulting object also contains a capture buffer for use in post processing and a timing markers for assessing
the processing time utilized by the callback function. When developing apps in the Jupyter Notebook there is
support for the IPywidgets along with threading.

2. rtlsdr_helper.py interfaces with pyrtldsr to provide a simple captures means for complex baseband
software defined radio (SDR) samples from the low-cost (~$20) RTL-SDR USB hardware dongle. The remain-
ing functions in this module support the implementation of demodulators for FM modulation and examples of
complete receivers for FM mono, FM stereo, and tools for FSK demodulation, including bit synchronization.

2.3 Documentation

Documentation is now housed on readthedocs which you can get to by clicking the docs badge near the top of
this README. Example notebooks can be viewed on GitHub pages. In time more notebook postings will be extracted
from Dr. Wickert’s Info Center.
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2.4 Getting Set-up on Your System

The best way to use this package is to clone this repository and then install it.

git clone https://github.com/mwickert/scikit-dsp-comm.git

There are package dependencies for some modules that you may want to avoid. Specifically these are whenever
hardware interfacing is involved. Specific hardware and software configuration details are discussed in wiki pages.
For Windows users pip install takes care of almost everything. I assume below you have Python on your path, so for
example with Anaconda, I suggest letting the installer set these paths up for you.

2.4.1 Editable Install with Dependencies

With the terminal in the root directory of the cloned repo perform an editable pip install using

pip install -e .[helpers]

2.4.2 Editable Install without Dependencies

To install without the PyAudio and RTL-SDR dependency, and hence not be able to use those modules,

pip install -e .

On Windows the binaries needed for pyaudio should install, but on other platforms you will have to do some more
work (Conda Forge install pending at the close of Scipy 2017 sprints). All the capability of the package is available
less pyaudio and the RTL-SDR radio with doing any special installations. See the wiki pages for more information.

2.4.3 Why an Editable Install?

The advantage of the editable pip install is that it is very easy to keep scikit-dsp-comm up to date. If you know
that updates have been pushed to the master branch, you simply go to your local repo folder and

git pull origin master

This will update you local repo and automatically update the Python install without the need to run pip again. Note:
If you have any Python kernels running, such as a Jupyter Notebook, you will need to restart the kernel to insure any
module changes get reloaded.

2.5 Feature: Real-Time DSP with pyaudio_helper

A real-time DSP experience is possible right in the Jupyter notebook. Fall 1017 updates to pyaudio_helper
make it possible to do two channel audio (stereo) and include interactivity using the ipywidgets. The callback
function for a simple loop-through is given below. Note: Not all of the code is shown here, but is available here

import sk_dsp_comm.pyaudio_helper as pah

# Check system audio devices available
pah.available_devices()

2.4. Getting Set-up on Your System 5
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Index 0 device name = Built-in Microphone, inputs = 2, outputs = 0
Index 1 device name = Built-in Output, inputs = 0, outputs = 2
Index 2 device name = iMic USB audio system, inputs = 2, outputs = 2

You can think of the device index as a jack number on an audio patch panel.

Here each frame is processed using ndarrays and gain scaling is applied at the frame level. In general processing
must be done sample-by-sample. Python globals can be used to maintain the state of a given DSP algorithm, e.g.,
an FIR or IIR filter.

# Scale right and left channels independently
def callback(in_data, frame_count, time_info, status):

DSP_IO.DSP_callback_tic()
# convert byte data to ndarray
in_data_nda = np.fromstring(in_data, dtype=np.int16)
# separate left and right data
x_left,x_right = DSP_IO.get_LR(in_data_nda.astype(float32))
#***********************************************
# DSP operations here

y_left = volume_scale_left.value*x_left
y_right = volume_scale_right.value*x_right

#***********************************************
# Pack left and right data together
y = DSP_IO.pack_LR(y_left,y_right)
# Typically more DSP code here
#***********************************************
# Save data for later analysis
# accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples_stereo(y_left,y_right)
#***********************************************
# Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
# Convert ndarray back to bytes
#return (in_data_nda.tobytes(), pyaudio.paContinue)
return y.tobytes(), pah.pyaudio.paContinue

With the callback in place we are now ready to create a DSP_IO object and start streaming.

N_FRAME = 512
# Create streaming object: use Built-in mic (idx = 0) and output (idx = 1)
DSP_IO = pah.DSP_io_stream(callback,in_idx=0,out_idx=1,fs=44100,

frame_length = N_FRAME,Tcapture = 10)

# use thread stream so widget can be used; Tsec = 0 <==> infinite stream
DSP_IO.interactive_stream(Tsec = 20, numChan = 2) # 20 Second stereo stream

# display volume control widgets
widgets.HBox([volume_dB_left,volume_dB_right])

two_channel_stream.pngCapture_Buffer.png
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2.6 Examples

• SciPy 2017 Tutorial

2.6.1 Jupyter Notebook Examples

In [1]: from __future__ import division # use so 1/2 = 0.5, etc.
%pylab inline
import sk_dsp_comm.sigsys as ss
import scipy.signal as signal
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

In [2]: pylab.rcParams['savefig.dpi'] = 100 # default 72
%config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Introduction to Python and the Jupyter Notebook

In [3]: t = arange(-4,4,.01)
x = cos(2*pi*t)
plot(t,x)

grid()

Rectangle and Triangle Pulses Defined

Before showing more examples, consider some familiar signal primitives in your signals and systems background.

To see these defined in the text see in particular Appendix F.5 (p.727) in the table of Fourier transform pairs.

Rectangle

Π
(︁ 𝑡

𝜏

)︁
=

{︃
1, |𝑡| ≤ 𝜏/2

0, otherwise
(2.1)

Triangle

Λ
(︁ 𝑡

𝜏

)︁
=

{︃
1 − |𝑡/𝜏 |, |𝑡| ≤ 𝜏

0, otherwise
(2.2)

To more readily play with these function represent them numerically in Python. The module ss.py has some wave-
form primitives to help.

In [4]: t = arange(-5,5,.01)
x_rect = ss.rect(t-3,2)
x_tri = ss.tri(t+2,1.5)
subplot(211)
plot(t,x_rect)
grid()

2.6. Examples 7
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ylabel(r'$\Pi((t-3)/2)$');
subplot(212)
plot(t,x_tri)
grid()
xlabel(r'Time (s)')
ylabel(r'$\Lambda((t+2)/1.5)$');
tight_layout()

• Consider an interactive version of the above:

In [5]: # Make an interactive version of the above
from ipywidgets import interact, interactive

def pulses_plot(D1,D2,W1,W2):
t = arange(-5,5,.01)
x_rect = ss.rect(t-D1,W1)
x_tri = ss.tri(t-D2,W2)
subplot(211)
plot(t,x_rect)
grid()
ylabel(r'$\Pi((t-3)/2)$');
subplot(212)
plot(t,x_tri)
grid()
xlabel(r'Time (s)')
ylabel(r'$\Lambda((t+2)/1.5)$');
tight_layout()

interactive_plot = interactive(pulses_plot,D1 = (-3,3,.5), D2 = (-3,3,.5), W1 = (0.5,2,.25), W2 = (0.5,2,.25));
output = interactive_plot.children[-1]
output.layout.height = '350px'
interactive_plot

More Signal Plotting

The basic pulse shapes (primitives) defined in the module ssd.py are very useful for working Text 2.13a &d, but
there are also times when you need a custom piecewise function.

Simple Cases:

Consider plotting

• 𝑥1(𝑡) = sin(2𝜋 · 5𝑡)Π((𝑡− 2)/2) for 0 ≤ 𝑡 ≤ 10

• 𝑥2(𝑡) =
∑︀∞

𝑛=−∞ = Π((𝑡− 5𝑛)/1) for −10 ≤ 𝑡 ≤ 10

In [6]: t1 = arange(0,10+.01,.01) # arange stops one step size less than the upper limit
x1 = sin(2*pi*5*t1)* ss.rect(t1-2,2)
subplot(211)
plot(t1,x1)
xlabel(r'Time (s)')
ylabel(r'$x_1(t)$')
grid()
t2 = arange(-10,10,.01)
# Tweak mod() to take on negative values
x2 = ss.rect(mod(t2+2.5,5)-2.5,1)

8 Chapter 2. scikit-dsp-comm
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subplot(212)
plot(t2,x2)
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$')
grid()
tight_layout()

Custom Piecewise:

A custom piecewise function is a direct and to the point way of getting a more complex function plotted. Consider
plotting:

𝑥3(𝑡) =

⎧⎪⎨⎪⎩
1 + 𝑡2, 0 ≤ 𝑡 ≤ 3

cos(2𝜋 · 5 · 𝑡) 3 < 𝑡 ≤ 5

0, otherwise
(2.3)

for −2 ≤ 𝑡 ≤ 6.

In [7]: def x3_func(t):
"""
Create a piecewise function for plotting x3
"""
x3 = zeros_like(t)
for k,tk in enumerate(t):

if tk >= 0 and tk <= 3:
x3[k] = 1 + tk**2

elif tk > 3 and tk <= 5:
x3[k] = cos(2*pi*5*tk)

return x3

In [8]: t3 = arange(-2,6+.01,.01)
x3 = x3_func(t3)
plot(t3,x3)
xlabel(r'Time (s)')
ylabel(r'$x_3(t)$')
xlim([-2,6])
grid()

In [9]: 26/2

Out[9]: 13.0

Energy and Power Signals

The general definitions are:

𝐸
Δ
= lim

𝑇→∞

∫︁ 𝑇

−𝑇

|𝑥(𝑡)|2 𝑑𝑡 =

∫︁ ∞

−∞
|𝑥(𝑡)|2 𝑑𝑡 (2.4)

𝑃
Δ
= lim

𝑇→∞

1

2𝑇

∫︁ 𝑇

−𝑇

|𝑥(𝑡)|2 𝑑𝑡 (2.5)

For the case of a periodic signal, you can take the definition of 𝑃 above and reduce the calculation down to

𝑃 =
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

|𝑥(𝑡)|2 𝑑𝑡 (2.6)

2.6. Examples 9
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where 𝑡0 can be any convenient value.

Consider the waveform of Text problem 2.14b

𝑥2(𝑡) =

∞∑︁
𝑛=−∞

Λ
(︁ 𝑡− 3𝑛

2

)︁
(2.7)

You can create an approximation to the waveform over a finite number of periods by doing a little programming:

In [10]: def periodic_tri(t,tau,T,N):
"""
Approximate x2(t) by running the sum index from -N to +N.
The period is set by T and tau is the tri pulse width
parameter (base width is 2*tau).

Mark Wickert January 2015
"""
x = zeros_like(t)
for n in arange(-N,N+1):

x += ss.tri(t-T*n,tau)
return x

In [11]: t = arange(-10,10,.001)
x = periodic_tri(t,2,6,10)
plot(t,x)
plot(t,abs(x)**2)
grid()
#xlim([-5,5])
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$ and $x_2^2(t)$');

For the power calculation create a time array that runs over exactly one period. Below is the case for the original
problem statement.

In [12]: T0 = 6
tp = arange(-T0/2,T0/2+.001,.001)
xp = periodic_tri(tp,2,T0,5)
plot(tp,xp)
plot(tp,abs(xp)**2)
legend((r'$x(t)$', r'$|x(t)|^2$'),loc='best',shadow=True)
grid();
xlim([-T0/2,T0/2])
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$ and $x_2^2(t)$');

A simple numerical approximation to the integral

𝑃 =
1

𝑇

∫︁ 𝑇

0

|𝑥𝑏(𝑡)|2 𝑑𝑡 (2.8)

is shown below:

In [13]: #Power calculation
Px2 = (1/T0)*sum(xp**2)*.001 # rectangular partitions for integral
print('Power estimate via numerical integration: %2.4f W' % Px2)

Power estimate via numerical integration: 0.2222 W

10 Chapter 2. scikit-dsp-comm
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Power in the Sum of Two Sinusoids

The problem is what is the power in the signal

𝑥(𝑡) = 𝐴1 cos(𝜔1𝑡 + 𝜑1) + 𝐴2 cos(𝜔2𝑡 + 𝜑2), −∞ < 𝑡 < ∞ (2.9)

Since we are not certain that 𝑥(𝑡) is periodic, the power calculation requires that we form

𝑃𝑥 = lim
𝑇→∞

1

𝑇

∫︁ 𝑇/2

−𝑇/2

|𝑥(𝑡)|2 𝑑𝑡 = ⟨|𝑥(𝑡)|2⟩ (2.10)

• Rather that just jumping in and making a mess, consider first the expansion of |𝑥(𝑡)|2 = 𝑥2(𝑡):

𝑥2(𝑡) =
𝐴2

1

2

[︀
1 + cos(2𝜔1𝑡 + 𝜑1)

]︀
+

𝐴2
2

2

[︀
1 + cos(2𝜔2𝑡 + 𝜑2)

]︀
(2.11)

+ 2
𝐴1𝐴2

2

{︁
cos[(𝜔1 + 𝜔2)𝑡 + (𝜑1 + 𝜑2)

]︀
+ cos[(𝜔1 − 𝜔2)𝑡 + (𝜑1 − 𝜑2)

]︀}︁
(2.12)

• The time average operator is linear, so we consider ⟨ ⟩ operating on each term of the above independently

• For 𝜔1 ̸= 𝜔2, the first two terms yield 𝐴2
1/2 and 𝐴2

2/2 respectively

• The last term requires some thinking, but as long as 𝜔1 ̸= 𝜔2 the times average of cos[(𝜔1 + 𝜔2)𝑡 + (𝜑1 + 𝜑2)]
and cos[(𝜔1 − 𝜔2)𝑡 + (𝜑1 − 𝜑2)], the two terms respectively are each zero!

• Finally,

𝑃𝑥 =
𝐴2

1

2
+

𝐴2
2

2
(2.13)

• When the frequencies are equal, then you can combine the terms using trig identities (recall the phasor addition
formula from ECE 2610

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑) (2.14)

where 𝜔 = 𝜔1 = 𝜔2 and

𝐴𝑒𝑗𝜑 = 𝐴1𝑒
𝑗𝜑1 + 𝐴2𝑒

𝑗𝜑2 (2.15)

In [14]: t = arange(-10,10,.001)
x1 = 4*cos(2*pi*10*t)
x2 = 3*cos(2*pi*3.45*t+pi/9)
plot(t,x1)
plot(t,x2)
plot(t,x1+x2)
grid()
xlabel(r'Time (s)')
ylabel(r'Amplitude')
legend((r'$x_1(t)$', r'$x_2(t)$', r'$x_1(t)+x_2(t)$'),loc='best',shadow=True)
xlim([-.1,.1]);

In [15]: print('Power calculations: %3.2f, %3.2f, %3.2f' \
% (var(x1),var(x2),var(x1+x2)))

Power calculations: 8.00, 4.50, 12.50

In [16]: print('Theory: %3.2f, %3.2f, %3.2f' \
% (4**2/2,3**2/2,4**2/2+3**2/2))

Theory: 8.00, 4.50, 12.50

2.6. Examples 11
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Fourier Series and Line Spectra Plotting

Being able to easily plot the line spectra of periodic signals will hopefully enhance your understanding. The module
ss.py contains the function ss.line_spectra() for this purpose. The function assumes that the Fourier coeffi-
cients, 𝑋𝑛 are available for a real signal 𝑥(𝑡). The function plots line spectra as: * The two-sided magnitude spectra *
The two-sided magnitude spectra in dB with an adjustable floor level in dB * The two-sided phase spectra in radians
* The one-sided line spectra corresponding to the three cases listed immediately above Examples are given below for
the case of a simple pulse train and then for a trapezoidal pulse train. IN the case of the trapezoidal pulse train the
underlying Fourier coefficients are obtained numerically using the FFT as described in the course notes.

A fundamental requirement in using ss.line_spectra() is to beable to supply the coefficients starting with the
DC term coefficient 𝑋0 and moving up to the 𝑁 th harmonic. Before plotting the pulse train line spectra I first describe
a helper function for visualizing the pulse train waveform.

Pulse Train

In [17]: def pulse_train(Np,fs,tau,t0):
"""
Generate a discrete-time approximation to a continuous-time
pulse train signal. Amplitude values are [0,1]. Scale and offset
later if needed.

Inputs
------
Np = number of periods to generate
fs = samples per period
tau = duty cycle
t0 = pulse delay time relative to first rising edge at t = 0

Return
------
t = time axis array
x = waveform

Mark Wickert, January 2015
"""
t = arange(0,Np*fs+1,1)/fs #time is normalized to make period T0 = 1.0
x = zeros_like(t)
# Using a brute force approach, just fill x with the sample values
for k,tk in enumerate(t):

if mod(tk-t0,1) <= tau and mod(tk-t0,1) >= 0:
x[k] = 1

return t,x

In [18]: tau = 1/8; fs = 8*16; t0 = 0 # note t0 = tau/2
subplot(211)
t,x = pulse_train(4,fs,tau,t0)
plot(t,x) # Just a plot of xa(t)
ylim([-.1,1.1])
grid()
ylabel(r'$x_a(t)$')
title(r'Pulse Train Signal: (top) $x_a(t)$, (bot) $x_b(t) = 1-x_a(t)$');
subplot(212)
t,x = pulse_train(4,fs,tau,t0)
plot(t,1-x) # Note here y(t) = 1 - x(t), a special case of
ylim([-.1,1.1]) # y(t) = A + B*x(t) in the notes
grid()

12 Chapter 2. scikit-dsp-comm
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xlabel(r'Time ($t/T_0$)')
ylabel(r'$x_b(t)$');

Example: Pulse Train Line Spectra

For the case of pulse train having the initial pulse starting at 𝑡 = 0, i.e.,

𝑥(𝑡) =

∞∑︁
𝑘=−∞

𝐴 · Π

(︂
𝑡− 𝜏/2 − 𝑘𝑇0

𝜏

)︂
, (2.16)

the Fourier coefficient are given by

𝑋𝑛 = 𝐴 · 𝜏

𝑇0
· sinc(𝑛𝑓0𝜏) · exp(−𝑗2𝜋𝑛𝑓0𝑡0) (2.17)

where 𝑓0 = 1/𝑇0 is the fundamental frequency and here 𝑡0 = 𝜏/2.

Line spectra plotting is shown below for this case. If the pulse train should be shifted in time to some other orientation,
then the phase plot will change, as the included exp(𝑗2𝜋𝑛𝑓0𝑡0) term will be different.

Note: The pulse train function define above is slightly different from the pulse train defined in the book and shown in
mathematical form as 𝑥(𝑡) just above in this cell. The function pulse_train() has the first pulse starting exactly
at 𝑡 = 0. To move the pule train right or left on the time axis, you can use the function parameter t0.

In [19]: n = arange(0,25+1) # Get 0 through 25 harmonics
tau = 0.125; f0 = 1; A = 1;
Xn = A*tau*f0*sinc(n*f0*tau)*exp(-1j*2*pi*n*f0*tau/2)
# Xn = -Xn # Convert the coefficients from xa(t) t0 xb(t)
# Xn[0] += 1
figure(figsize=(6,2))
f = n # Assume a fundamental frequency of 1 Hz so f = n
ss.line_spectra(f,Xn,mode='mag',sides=2,fsize=(6,2))
xlim([-25,25]);
#ylim([-50,10])
figure(figsize=(6,2))
ss.line_spectra(f,Xn,mode='phase',fsize=(6,2))
xlim([-25,25]);

<Figure size 432x144 with 0 Axes>

<Figure size 432x144 with 0 Axes>

Example: Trapezoidal Pulse

Consider the line spectra of a finite rise and fall time pulse train is of practical interest. The function trap_pulse()
allows you first visualize one period of the trapezoidal pulse train, and then use this waveform in obtaining numerically
the Fourier coefficients of this signal. PLotting the corresponding line spectra follows.

A point to be main is that by slowing down the edges (rise time/fall time) of the pulse train the amplitude of the
harmonics falls off more rapidly. When considering the clock speed in todays PCs this can be a good thing as harmonic
emission is an issue.
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In [20]: def trap_pulse(N,tau,tr):
"""
xp = trap_pulse(N,tau,tr)

Mark Wickert, January 2015
"""
n = arange(0,N)
t = n/N
xp = zeros(len(t))
# Assume tr and tf are equal
T1 = tau + tr
# Create one period of the trapezoidal pulse waveform
for k in n:

if t[k] <= tr:
xp[k] = t[k]/tr

elif (t[k] > tr and t[k] <= tau):
xp[k] = 1

elif (t[k] > tau and t[k] < T1):
xp[k] = -t[k]/tr + 1 + tau/tr;

else:
xp[k] = 0

return xp, t

Let 𝜏 = 1/8 and 𝑡𝑟 = 1/20:

In [21]: # tau = 1/8, tr = 1/20
N = 1024
xp,t = trap_pulse(N,1/8,1/20)
Xp = fft.fft(xp)
figure(figsize=(6,2))
plot(t,xp)
grid()
title(r'Spectra of Finite Risetime Pulse Train: $\tau = 1/8$ $t_r = 1/20$')
ylabel(r'$x(t)$')
xlabel('Time (s)')
f = arange(0,N/2)
ss.line_spectra(f[0:25],Xp[0:25]/N,'magdB',floor_dB=-80,fsize=(6,2))
ylabel(r'$|X_n| = |X(f_n)|$ (dB)');
#% tau = 1/8, tr = 1/10
xp,t = trap_pulse(N,1/8,1/10)
Xp = fft.fft(xp)
figure(figsize=(6,2))
plot(t,xp)
grid()
title(r'Spectra of Finite Risetime Pulse Train: $\tau = 1/8$ $t_r = 1/10$')
ylabel(r'$x(t)$')
xlabel('Time (s)')
ss.line_spectra(f[0:25],Xp[0:25]/N,'magdB',floor_dB=-80,fsize=(6,2))
ylabel(r'$|X_n| = |X(f_n)|$ (dB)');

With the edge speed slowed down it is clear that the harmonics drop off faster.
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Fourier Transforms

The Fourier transfrom definition is:

𝑋(𝑓) =

∫︁ ∞

−∞
𝑥(𝑡) 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 (2.18)

𝑥(𝑡) =

∫︁ ∞

−∞
𝑋(𝑓) 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓 (2.19)

A numerical approximation to the Fourier transform is possible using the FFT, or more conveniently using the function
freqz() from the package scipy.signal. A helper function to abstract some of the digital signal processing
details is f, X = FT_approx(x,dt,Nfft). The function is now part of sigsys.py with name change to
ft_approx():

In [22]: def FT_approx(x,t,Nfft):
'''
Approximate the Fourier transform of a finite duration
signal using scipy.signal.freqz()

Inputs
------

x = input signal array
t = time array used to create x(t)

Nfft = the number of frdquency domain points used to
approximate X(f) on the interval [fs/2,fs/2], where
fs = 1/Dt. Dt being the time spacing in array t

Return
------
f = frequency axis array in Hz
X = the Fourier transform approximation (complex)

Mark Wickert, January 2015
'''
fs = 1/(t[1] - t[0])
t0 = (t[-1]+t[0])/2 # time delay at center
N0 = len(t)/2 # FFT center in samples
f = arange(-1/2,1/2,1/Nfft)
w, X = signal.freqz(x,1,2*pi*f)
X /= fs # account for dt = 1/fs in integral
X *= exp(-1j*2*pi*f*fs*t0)# time interval correction
X *= exp(1j*2*pi*f*N0)# FFT time interval is [0,Nfft-1]
F = f*fs
return F, X

Example: Rectangular Pulse

As as simple starting point example, consider 𝑥(𝑡) = Π(𝑡𝜏). The well known result for the Fourier transfrom (FT) is:

𝑋(𝑓) = ℱ
{︂

Π

(︂
𝑡

𝜏

)︂}︂
= 𝜏 sinc(𝑓𝜏) (2.20)

We now use the above defined FT_approx() to obtain a numerical approximation to the FT of the rectangular pulse.

Tips: * Make sure the signal is well contained on the time interval used to generate 𝑥(𝑡) * Make sure the sampling
rate, one over the sample spacing, is adequate to represent the signal spectrum * From sampling theory, the reange of
frequencies represented by the spectrum estimate will be 𝑓𝑠/2 ≤ 𝑓 < 𝑓𝑠/2
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In [23]: fs = 100 # sampling rate in Hz
tau = 1
t = arange(-5,5,1/fs)
x0 = ss.rect(t-.5,tau)
figure(figsize=(6,5))
subplot(311)
plot(t,x0)
grid()
ylim([-0.1,1.1])
xlim([-2,2])
title(r'Exact Waveform')
xlabel(r'Time (s)')
ylabel(r'$x_0(t)$');

# FT Exact Plot
fe = arange(-10,10,.01)
X0e = tau*sinc(fe*tau)
subplot(312)
plot(fe,abs(X0e))
#plot(f,angle(X0))
grid()
xlim([-10,10])
title(r'Exact Spectrum Magnitude')
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_0e(f)|$');

# FT Approximation Plot
f,X0 = ss.ft_approx(x0,t,4096)
subplot(313)
plot(f,abs(X0))
#plot(f,angle(X0))
grid()
xlim([-10,10])
title(r'Approximation Spectrum Magnitude')
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_0(f)|$');
tight_layout()

Example: Text Problem 2.31a Drill Down

In this problem you are given

𝑥1(𝑡) = Π

(︂
𝑡 + 1/2

1

)︂
− Π

(︂
𝑡− 1/2

1

)︂
(2.21)

The Fourier transfrom of this signal can be found using linearity and the time delay theorems.

𝑋1(𝑓) = ℱ
{︂

Π

(︂
𝑡 + 1/2

1

)︂
− Π

(︂
𝑡− 1/2

1

)︂}︂
(2.22)

= sinc(𝑓) ·
[︁
𝑒𝑗2𝜋𝑓 ·1/2 − 𝑒−𝑗2𝜋𝑓 ·1/2

]︁
× 2𝑗

2𝑗
(2.23)

= 2𝑗 sinc(𝑓) · sin(𝜋𝑓) (2.24)

In [24]: fs = 100
t = arange(-5,5,1/fs)
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x1 = ss.rect(t+1/2,1)-ss.rect(t-1/2,1)
subplot(211)
plot(t,x1)
grid()
ylim([-1.1,1.1])
xlim([-2,2])
xlabel(r'Time (s)')
ylabel(r'$x_1(t)$');
fe = arange(-10,10,.01)
X1e = 2*1j*sinc(fe)*sin(pi*fe)
f,X1 = ss.ft_approx(x1,t,4096)
subplot(212)
plot(f,abs(X1))
plot(fe,abs(X1e))
#plot(f,angle(X1))
legend((r'Num Approx',r'Exact'),loc='best')
grid()
xlim([-10,10])
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_1(f)|$');
tight_layout()

• Notice the numerical approximation and exact spectral plots overlay one another

Example: Modulation Theorem

Consider the modulation theorem, which is extremely important to communications theory:

𝑦(𝑡) = 𝑥(𝑡) · cos(2𝜋𝑓0𝑡) (2.25)

𝑌 (𝑓) =
1

2
[𝑋(𝑓 − 𝑓0) + 𝑋(𝑓 + 𝑓0)] (2.26)

Here we will use a triangle pulse for 𝑥(𝑡):

In [25]: fs = 100 # sampling rate in Hz
tau = 1
t = arange(-5,5,1/fs)
x3 = ss.tri(t,tau)
y = x3*cos(2*pi*10*t)
subplot(211)
plot(t,x3)
plot(t,y)
grid()
ylim([-1.1,1.1])
xlim([-2,2])
legend((r'$x_3(t)$', r'$y(t)$'),loc='lower right',shadow=True)
title(r'Time Domain: $x_3(t)$ and $y(t)=x_3(t)\cos(2\pi\cdot 5\cdot t)$')
xlabel(r'Time (s)')
ylabel(r'$y(t)$');
f,Y = ss.ft_approx(y,t,4096)
subplot(212)
plot(f,abs(Y))
#plot(f,angle(X0))
grid()
title(r'Frequency Domain: $Y(f)$')
xlim([-15,15])
xlabel(r'Frequency (Hz)')
ylabel(r'$|Y(f)|$');
tight_layout()
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Example: Representing a Bandlimited Signal

We know that in theory a bandlimited signal can only be generated from a signal having infinite duration. Specifically,
a signal with rectangular spectrum has Fourier transfrom pair:

𝑥(𝑡) = 2𝑊 sinc(2𝑊𝑡)
ℱ⇔ Π

(︂
𝑓

2𝑊

)︂
= 𝑋(𝑓) (2.27)

In a simulation we expect to have troubles modeling the finite duration aspects of the signal.

In [26]: fs = 100 # sampling rate in Hz
W = 5
t = arange(-5,5,1/fs)
x4 = 2*W*sinc(2*W*t)
figure(figsize=(6,2))
plot(t,x4)
grid()
#ylim([-1.1,1.1])
xlim([-2,2])
title(r'Time Domain: $x_4(t),\ W = 5$ Hz')
xlabel(r'Time (s)')
ylabel(r'$x_4(t)$');
f,X4 = ss.ft_approx(x4,t,4096)
figure(figsize=(6,2))
plot(f,abs(X4))
grid()
title(r'Frequency Domain: $X_4(f)$')
xlim([-10,10])
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_4(f)|$');
figure(figsize=(6,2))
plot(f,20*log10(abs(X4)))
grid()
title(r'Frequency Domain: $X_4(f)$ in dB')
ylim([-50,5])
xlim([-10,10])
xlabel(r'Frequency (Hz)')
ylabel(r'$|X_4(f)|$ (dB)');

Note: The dB version (last plot) reveals that the first sidelobes of the spectrum are only down ~21dB. Increasing the
length of the time window will not help. The spectral side lobes will become more tightly packed, but the first sidelobe
will still be down only 21dB. With other pulse shapes in the time domain, i.e., note simply a truncted sinc() function
reduced sidelobes can be obtained.
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Convolution

• The convolution of two signals 𝑥1(𝑡) and 𝑥2(𝑡) is defined as

𝑥(𝑡) = 𝑥1(𝑡) * 𝑥2(𝑡) =

∫︁ ∞

−∞
𝑥1(𝜆)𝑥2(𝑡− 𝜆) 𝑑𝜆 (2.28)

= 𝑥2(𝑡) * 𝑥1(𝑡) =

∫︁ ∞

−∞
𝑥2(𝜆)𝑥1(𝑡− 𝜆) 𝑑𝜆 (2.29)

• A special convolution case is 𝛿(𝑡− 𝑡0)

𝛿(𝑡− 𝑡0) * 𝑥(𝑡) =

∫︁ ∞

−∞
𝛿(𝜆− 𝑡0)𝑥(𝑡− 𝜆) 𝑑𝜆 (2.30)

= 𝑥(𝑡− 𝜆)
⃒⃒
𝜆=𝑡0

= 𝑥(𝑡− 𝑡0) (2.31)

You can experiment with the convolution integral numerically using ssd.conv_integral() found in the
module ssd.py.

In [27]: t = arange(-2,2.001,.001)
p1 = ss.rect(t,1)
p2 = ss.rect(t,3)
y,ty = ss.conv_integral(p1,t,p2,t)
plot(ty,y)
ylim([-.01,1.01])
grid()
xlabel(r'Time (s)')
ylabel(r'$y(t)$');

Output support: (-4.00, +4.00)

For convolutions involving semi-infinite signals, such as 𝑢(𝑡), you can tell ssd.conv_integral() about this via
the optional extent argument. See the function help using

ss.conv_integral?

In [28]: # Consider a pulse convolved with an exponential ('r' type extent)
tx = arange(-1,8,.01)
x = ss.rect(tx-2,4) # pulse starts at t = 0
h = 4*exp(-4*tx)*ss.step(tx)
y,ty = ss.conv_integral(x,tx,h,tx,extent=('f','r')) # note extents set
plot(ty,y) # expect a pulse charge and discharge waveform
grid()
title(r'$\Pi((t-2)/4)\ast 4 e^{-4t} u(t)$')
xlabel(r'Time (s)')
ylabel(r'$y(t)$');

Output support: (-2.00, +6.99)

Spectrum of PN Sequence (exact)

The cell below is a copy of the earlier pulse train line spectra example. Use this as a template to create the solution to
the PN code problem of HW 3.
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In [29]: n = arange(0,25+1) # Get 0 through 25 harmonics
tau = 0.125; f0 = 1; A = 1;
Xn = A*tau*f0*sinc(n*f0*tau)*exp(-1j*2*pi*n*f0*tau/2)
# Xn = -Xn # Convert the coefficients from xa(t) t0 xb(t)
# Xn[0] += 1
figure(figsize=(6,2))
f = n # Assume a fundamental frequency of 1 Hz so f = n
ss.line_spectra(f,Xn,mode='mag',sides=2,fsize=(6,2))
xlim([-25,25]);
#ylim([-50,10])
figure(figsize=(6,2))
ss.line_spectra(f,Xn,mode='phase',fsize=(6,2))
xlim([-25,25]);

<Figure size 432x144 with 0 Axes>

<Figure size 432x144 with 0 Axes>

Spectrum of PN Sequence (approx)

The code below approximates the PSD of the PN code using a numerical approximation to the Fourier coefficients,
𝑋𝑛. This development may be useful for the lab, as you can esily change the waveform level without having to rework
the theory.

The approach taken here to create one period of the PN waveform at 10 samples per bit. The line containing the
function ss.upsample() converts the bit sequence into a waveform by upsampling and filtering with a rectangular
pulse shape (ones(10)). The function ss.fs_coeff() numerically calculates the 𝑋𝑛‘s. To plot the PSD from
the Fourier coefficients we use

𝑆𝑥(𝑓) =

∞∑︁
𝑛=−∞

|𝑋𝑛|2𝛿(𝑓 − 𝑛𝑓0)

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝑓0‘𝑖𝑛𝑡ℎ𝑖𝑠𝑐𝑎𝑠𝑒𝑖𝑠 : 𝑚𝑎𝑡ℎ : ‘1/(𝑀𝑇0)‘𝑤𝑖𝑡ℎ : 𝑚𝑎𝑡ℎ : ‘𝑇0‘

beging the bit period and 𝑀 the code period in bits.

In [30]: x_PN4 = ss.m_seq(4)
x = signal.lfilter(ones(10),1,ss.upsample(x_PN4,10))
t = arange(0,len(x))/10
figure(figsize=(6,2))
plot(t,x);
title(r'Time Domain and PSD of $M=15$ PN Code with $T = 1$')
xlabel(r'Time (s)')
ylabel(r'x(t)')
axis([0,15,-0.1,1.1]);
grid()
# 10 samples/bit so 150 samples/period
# harmonics spaced by 1/(15*T) = 1/15
Xk,fk = ss.fs_coeff(x,45,1/15)
ss.line_spectra(fk,Xk,'magdB',lwidth=2.0,floor_dB=-50,fsize=(6,2))
xlim([-3,3])
ylabel(r'$|X_n| = |X(f_n)|$ (dB)');
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In [31]: # Line spacing
1/15

Out[31]: 0.06666666666666667

In [32]: import sk_dsp_comm.digitalcom as dc
y_PN5_bits = ss.PN_gen(10000,5)
# Convert to waveform level shifted to +/-1 amplitude
y = 2*signal.lfilter(ones(10),1,ss.upsample(y_PN5_bits,10))-1
# Find the time averaged autocorrelation function normalized
# to have a peak amplitude of 1
Ry,tau = dc.xcorr(y,y,400)
# We know Ry is real so strip small imag parts from FFT-based calc
Ry = Ry.real

In [33]: fs = 10
t = arange(len(y))/fs
plot(t[:500],y[:500])
title(r'PN Waveform for 5 Stages (Period $2^5 -1 = 31$ bits)')
ylabel(r'Amplitude')
xlabel(r'Bits (10 samples/bit)')
grid();

In [34]: tau_s = tau/10
figure(figsize=(6,2))
plot(tau_s,Ry)
title(r'Autocorrelation and PSD Estimates for $M=31$ with $T = 1$')
xlabel(r'Autocorrelation Lag $\tau$ (s)')
ylabel(r'$R_y(\tau)$')
grid();
figure(figsize=(6,2))
psd(y,2**12,10)
xlabel(r'Frequency (Hz)')
ylabel(r'$S_y(f)$ (dB)')
#xlim([0,.002]);
ylim([-30,20]);

In Lab 2 of ECE 4670 a C/C++ version of a PN generator is implemented to run the ARM mbed LPC 1768 microcon-
troller (https://www.sparkfun.com/products/9564). At the heart of this code is:

// Globals defined as unsigned int
tap1 -= 1;
tap2 -= 1;
mask1 = 0x1 << (tap1);
mask2 = 0x1 << (tap2);
bit = 0x0;
sync = 0x0;

void gen_PN() {
my_pin5 = bit;
my_pin6 = synch_bit;
led2 = bit;
led3 = synch_bit;
if (clk_state == 0x1)
{

(continues on next page)
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(continued from previous page)

// Advance m-sequence generator by one bit
// XOR tap1 and tap2 SR values and feedback to input

fb = ((sr & mask1)>> tap1) ^ ((sr & mask2) >> tap2);
sr = (sr << 1) + fb;
bit = sr & 0x1;
// Use random number generator in place of m-sequence bits
if (DIP_sw4)
{

bit = rand_int() & 0x1;
}
clk_state = 0x0;
// See if all 1's condition exists in SR
if ((sr & synch) == synch) {

synch_bit = 0x1;
}
else
{

synch_bit = 0x0;
}

}
else
{

if (DIP_sw1) bit = !bit;
clk_state = 0x1;

}
}

The data type is unsigned int, which on the mbed is uint16_t, an unsigned 16-bit integer. A single unsigned
integer is used as a 16-bit shift register with the LSB, furthest bit to the right, used to represent the first register stage.
The shift register is advanced using a left shift << bitwise operation. We can code this Python almost directly, as
shown below.

In [35]: class bitwise_PN(object):
"""
Implement a PN generator using bitwise manipulation for
the shift register. The LSB holds b0 and bits are shifted left.

+----+----+----+----+----+----+----+
sr = |bM-1| .. |bM-k| .. | b2 | b1 | b0 |

+----+----+----+----+----+----+----+
| |

Feedback:(tap1-1) (tap2-1) Shift left using <<

Mark Wickert February 2017
"""
def __init__(self,tap1,tap2,Nstage,sr_initialize):

"""
Initialize the PN generator object
"""
self.tap1 = tap1 - 1
self.tap2 = tap2 - 1
self.mask1 = 0x1 << (tap1 - 1) # to select bit of interest
self.mask2 = 0x1 << (tap2 - 1) # to select bit of interest
self.Nstage = Nstage
self.period = 2**Nstage - 1
self.sr = sr_initialize
self.bit = 0
self.sync_bit = 0
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def clock_PN(self):
'''
Method to advance m-sequence generator by one bit
XOR tap1 and tap2 SR values and feedback to input
'''
fb = ((self.sr & self.mask1)>> self.tap1) ^ \

((self.sr & self.mask2) >> self.tap2)
self.sr = (self.sr << 1) + fb
self.sr = self.sr & self.period # set MSBs > Nstage to 0
self.bit = self.sr & 0x1 # output LSB from SR
# See if all 1's condition exits in SR, if so output a synch pulse
if ((self.sr & self.period) == self.period):

self.sync_bit = 0x1
else:

self.sync_bit = 0x0
print('output = %d, sr contents = %s, sync bit = %d' \

% (self.bit, binary(self.sr, self.Nstage), self.sync_bit))

In [36]: # A simple binary format display function which shows
# leading zeros to a fixed bit width
def binary(num, length=8):

return format(num, '#0{}b'.format(length + 2))

In [37]: PN1 = bitwise_PN(10,7,10,0x1)

In [38]: PN1.clock_PN()

output = 0, sr contents = 0b0000000010, sync bit = 0

In [39]: # sr initial condition
sr = 0b1

In [40]: Nout = 20
x_out = zeros(Nout)
s_out = zeros(Nout)
PN1 = bitwise_PN(3,2,3,0x1)
for k in range(Nout):

PN1.clock_PN()
x_out[k] = PN1.bit
s_out[k] = PN1.sync_bit

output = 0, sr contents = 0b010, sync bit = 0
output = 1, sr contents = 0b101, sync bit = 0
output = 1, sr contents = 0b011, sync bit = 0
output = 1, sr contents = 0b111, sync bit = 1
output = 0, sr contents = 0b110, sync bit = 0
output = 0, sr contents = 0b100, sync bit = 0
output = 1, sr contents = 0b001, sync bit = 0
output = 0, sr contents = 0b010, sync bit = 0
output = 1, sr contents = 0b101, sync bit = 0
output = 1, sr contents = 0b011, sync bit = 0
output = 1, sr contents = 0b111, sync bit = 1
output = 0, sr contents = 0b110, sync bit = 0
output = 0, sr contents = 0b100, sync bit = 0
output = 1, sr contents = 0b001, sync bit = 0
output = 0, sr contents = 0b010, sync bit = 0
output = 1, sr contents = 0b101, sync bit = 0
output = 1, sr contents = 0b011, sync bit = 0
output = 1, sr contents = 0b111, sync bit = 1
output = 0, sr contents = 0b110, sync bit = 0
output = 0, sr contents = 0b100, sync bit = 0
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In [41]: stem(x_out)
stem(0.2*s_out,markerfmt = 'ro')
ylim([0,1.1])

Out[41]: (0, 1.1)

Cross Correlation and Signal Delay

The idea of the autocorrelation function can be extended to the cross correlation, that is the correlation or likeness
between two signals, say 𝑥(𝑡) and 𝑦(𝑡). Define

𝑅𝑥𝑦(𝜏) = ⟨𝑥(𝑡)𝑦(𝑡 + 𝜏)⟩ = lim
𝑇→∞

1

2𝑇

∫︁ 𝑇

−𝑇

𝑥(𝑡)𝑦(𝑡 + 𝜏) 𝑑𝑡 (2.32)

Consider a simulation example using dc.xcorr(x,t,lags):

In [42]: import sk_dsp_comm.digitalcom as dc
x_PN4_bits = ss.PN_gen(10000,6)
# Convert to waveform level shifted to +/-1 amplitude
x_s = 2*signal.lfilter(ones(10),1,ss.upsample(x_PN4_bits,10))-1
# Form a delayed version of x_S
T_D = 35 # 35 sample delay
y_s = signal.lfilter(concatenate((zeros(T_D),array([1]))),1,x_s)
figure(figsize=(6,2))
plot(x_s[:200])
plot(y_s[:200])
ylim([-1.1,1.1])
title(r'Delayed and Undelayed Signals for $T_D = 35$ Samples')
xlabel(r'Samples (10/PN bit)')
ylabel(r'$x_s(t)$ and $y_s(t)$')
grid();
# Find the time averaged autocorrelation function normalized
# to have a peak amplitude of 1
Ryx,tau = dc.xcorr(y_s,x_s,200) #note order change
# We know Ryx is real
Ryx = Ryx.real
tau_s = tau/10
figure(figsize=(6,2))
plot(tau_s,Ryx)
title(r'Cross Correlation for $M=4$ with $T = 1$ and Delay 35 Samples')
xlabel(r'Autocorrelation Lag $\tau$ (s)')
ylabel(r'$R_{yx}(\tau)$')
grid();

Spectral Containment Bandwidth (text problem 2.55)

In text problem 2.55 you are asked to find the 90% energy contain bandwidth of a signal 𝑥𝑖(𝑡). Specifically you are to
find the lowpass or one-sided bandwidth of a baseband signal such that 90% of the total signal energy is contained in
the bandwidth, 𝐵90. You obtain 𝐵90 by solving the following equation

0.9 =
0.9𝐸total

𝐸total
=

∫︀ 𝐵90

−𝐵90
𝐺(𝑓)𝑑𝑓∫︀∞

−∞ 𝐺(𝑓)𝑑𝑓
=

2
∫︀ 𝐵90

0
𝐺(𝑓)𝑑𝑓

2
∫︀∞
0

𝐺(𝑓)𝑑𝑓
=

∫︀ 𝐵90

0
𝐺(𝑓)𝑑𝑓∫︀∞

0
𝐺(𝑓)𝑑𝑓

, (2.33)
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where 𝐺(𝑓) = |𝑋𝑖(𝑓)|2 is the energy spectral density of 𝑥𝑖(𝑡).

For parts (c) and (d) the problem states you need to perform numerical integration.

Example:

In an exalier example found in this notebook I found the Fourier transform of

𝑥(𝑡) = Π

(︂
𝑡− 𝜏/2

𝜏

)︂
− Π

(︂
𝑡 + 𝜏/2

𝜏

)︂
(2.34)

to be

𝑋(𝑓) = 2𝑗 sinc(𝑓𝜏) · sin(𝜋𝑓𝜏) (2.35)

Note I have modified the problem to now have pulse width 𝜏 to better match the homework problem where 𝜏 is a
variable.

The energy spectral density is

𝐺(𝑓) = 4 sinc2(𝑓𝜏) · sin2(𝜋𝑓𝜏) (2.36)

I convenient way to numerically integrate 𝐺(𝑓) is using simple reactangular partitions, but making sure that ∆𝑓 is
small relative to the changes in 𝐺(𝑓). Since you do not know what the value of 𝜏 you consider a normalized frequency
variable 𝑓𝑛 = 𝑓𝜏 in the analysis. The rest of the steps are:

1. Sweep 𝐺(𝑓𝑛) using an array fn running from zero to 𝑓𝑛 large enough to insure that 𝐺(𝑓𝑛) is very small relative
to it largest value. In Python this is just filling an array, Gn with the functional values.

2. Form a new array which contains the cumulative sum of the values in Gn, say Gn_cumsum = cumsum(Gn).
Aso form the sum of the array values, i.e., Gn_tot = sum(Gn)

3. Plot the ratio of ‘Gn_cumsum/Gn_sum versus fn. The curve should start at zero and climb to one as 𝑓𝑛
becomes large. The value of 𝑓𝑛 where the curve crosses through 0.9 is the 90% containment bandwidth.

Note: You might notice that ∆𝑓 , which is needed in the rectangular integration formula was never used. Why? In
the calculation of the cumulative sum and the calculation of the total, both should include ∆𝑓 , hence in the ration the
values cancel out. Nice!

In [43]: fn = arange(0,10,.001)
Gn = 4*sinc(fn)**2 * sin(pi*fn)**2
Gn_cumsum = cumsum(Gn)
Gn_tot = sum(Gn)
plot(fn,Gn_cumsum/Gn_tot)
grid()
xlabel('Normalized Frequency $f\tau$')
ylabel('Fractional Power Containment');

In [44]: fn_idx = find(abs(Gn_cumsum/Gn_tot - 0.9)< 0.0005)
fn_idx

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/ipykernel_launcher.py:1: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
"""Entry point for launching an IPython kernel.

Out[44]: array([1446, 1447, 1448, 1449, 1450])

In [45]: print('The normalized 90 percent containment bandwidth is %2.2f Hz-s.' \
% fn[1448])

The normalized 90 percent containment bandwidth is 1.45 Hz-s.
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Filter Analysis

To facilitate the performance analysis of both discrete-time and continuous-time filters, the functions freqz_resp()
and freqs_resp() are available (definitions below, respectively). With these functions you can quickly move
from z-domain or s-domain rational system function coefficients to visualization of the filter frequency response *
Magnitude * Magnitude in dB * Phase in radians * Group delay in samples or seconds (digital filter) * Group delay in
seconds (analog filter)

In [46]: def freqz_resp(b,a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)):
"""
A method for displaying digital filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freq_resp(self,mode = 'dB',Npts = 1024)

A method for displaying the filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode = 'dB',Npts = 1024,fsize=(6,4))

b = ndarray of numerator coefficients
a = ndarray of denominator coefficents

Dmin = start frequency as 10**Dmin
Dmax = stop frequency as 10**Dmax
mode = display mode: 'dB' magnitude, 'phase' in radians, or

'groupdelay_s' in samples and 'groupdelay_t' in sec,
all versus frequency in Hz

Npts = number of points to plot; defult is 1024
fsize = figure size; defult is (6,4) inches

Mark Wickert, January 2015
"""
f = np.arange(0,Npts)/(2.0*Npts)
w,H = signal.freqz(b,a,2*np.pi*f)
plt.figure(figsize=fsize)
if mode.lower() == 'db':

plt.plot(f*fs,20*np.log10(np.abs(H)))
plt.xlabel('Frequency (Hz)')
plt.ylabel('Gain (dB)')
plt.title('Frequency Response - Magnitude')

elif mode.lower() == 'phase':
plt.plot(f*fs,np.angle(H))
plt.xlabel('Frequency (Hz)')
plt.ylabel('Phase (rad)')
plt.title('Frequency Response - Phase')

elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'):
"""
Notes
-----

Since this calculation involves finding the derivative of the
phase response, care must be taken at phase wrapping points
and when the phase jumps by +/-pi, which occurs when the
amplitude response changes sign. Since the amplitude response
is zero when the sign changes, the jumps do not alter the group
delay results.
"""
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theta = np.unwrap(np.angle(H))
# Since theta for an FIR filter is likely to have many pi phase
# jumps too, we unwrap a second time 2*theta and divide by 2
theta2 = np.unwrap(2*theta)/2.
theta_dif = np.diff(theta2)
f_diff = np.diff(f)
Tg = -np.diff(theta2)/np.diff(w)
max_Tg = np.max(Tg)
#print(max_Tg)
if mode.lower() == 'groupdelay_t':

max_Tg /= fs
plt.plot(f[:-1]*fs,Tg/fs)
plt.ylim([0,1.2*max_Tg])

else:
plt.plot(f[:-1]*fs,Tg)
plt.ylim([0,1.2*max_Tg])

plt.xlabel('Frequency (Hz)')
if mode.lower() == 'groupdelay_t':

plt.ylabel('Group Delay (s)')
else:

plt.ylabel('Group Delay (samples)')
plt.title('Frequency Response - Group Delay')

else:
s1 = 'Error, mode must be "dB", "phase, '
s2 = '"groupdelay_s", or "groupdelay_t"'
print(s1 + s2)

In [47]: def freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode = 'dB',Npts = 1024,fsize=(6,4)):
"""
A method for displaying analog filter frequency response magnitude,
phase, and group delay. A plot is produced using matplotlib

freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode='dB',Npts=1024,fsize=(6,4))

b = ndarray of numerator coefficients
a = ndarray of denominator coefficents

Dmin = start frequency as 10**Dmin
Dmax = stop frequency as 10**Dmax
mode = display mode: 'dB' magnitude, 'phase' in radians, or

'groupdelay', all versus log frequency in Hz
Npts = number of points to plot; defult is 1024
fsize = figure size; defult is (6,4) inches

Mark Wickert, January 2015
"""
f = np.logspace(Dmin,Dmax,Npts)
w,H = signal.freqs(b,a,2*np.pi*f)
plt.figure(figsize=fsize)
if mode.lower() == 'db':

plt.semilogx(f,20*np.log10(np.abs(H)))
plt.xlabel('Frequency (Hz)')
plt.ylabel('Gain (dB)')
plt.title('Frequency Response - Magnitude')

elif mode.lower() == 'phase':
plt.semilogx(f,np.angle(H))
plt.xlabel('Frequency (Hz)')
plt.ylabel('Phase (rad)')
plt.title('Frequency Response - Phase')
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elif mode.lower() == 'groupdelay':
"""
Notes
-----

See freqz_resp() for calculation details.
"""
theta = np.unwrap(np.angle(H))
# Since theta for an FIR filter is likely to have many pi phase
# jumps too, we unwrap a second time 2*theta and divide by 2
theta2 = np.unwrap(2*theta)/2.
theta_dif = np.diff(theta2)
f_diff = np.diff(f)
Tg = -np.diff(theta2)/np.diff(w)
max_Tg = np.max(Tg)
#print(max_Tg)
plt.semilogx(f[:-1],Tg)
plt.ylim([0,1.2*max_Tg])
plt.xlabel('Frequency (Hz)')
plt.ylabel('Group Delay (s)')
plt.title('Frequency Response - Group Delay')

else:
print('Error, mode must be "dB" or "phase or "groupdelay"')

Example: Discrete-Time Chebyshev Type I Bandpass Filter

In [48]: import sk_dsp_comm.iir_design_helper as iird
import sk_dsp_comm.fir_design_helper as fird

In [49]: b1,a1,sos1 = iird.IIR_bpf(200,250,300,350,0.1,60.0,1000,'butter')
b2,a2,sos2 = iird.IIR_bpf(200,250,300,350,0.1,60.0,1000,'cheby1')

IIR butter order = 16.
IIR cheby1 order = 12.

In [50]: figure()
iird.freqz_resp_cas_list([sos1,sos2],'dB',1000)
ylim([-70,0])
grid();
figure()
iird.freqz_resp_cas_list([sos1,sos2],'groupdelay_t',1000)
grid();
figure()
iird.sos_zplane(sos2)

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:346: RuntimeWarning: divide by zero encountered in log10
plt.plot(f*fs,20*np.log10(np.abs(H)))

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:379: RuntimeWarning: divide by zero encountered in log10
idx = pylab.find(20*np.log10(H[:-1]) < -400)

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:379: RuntimeWarning: invalid value encountered in multiply
idx = pylab.find(20*np.log10(H[:-1]) < -400)

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:379: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
idx = pylab.find(20*np.log10(H[:-1]) < -400)

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:508: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
idx_N_mult = mlab.find(N_mult>1)

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:518: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
idx_D_mult = mlab.find(D_mult>1)

Out[50]: (12, 12)
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In [51]: b,a = signal.cheby1(5,.1,2*array([250,300])/1000,btype='bandpass')

In [52]: freqz_resp(b,a,mode='dB',fs=1000,fsize=(6,2))
grid()
ylim([-80,5]);
xlim([100,400]);
freqz_resp(b,a,mode='groupdelay_s',fs=1000,fsize=(6,2))
grid()
xlim([100,400]);

Example: Continuous-Time Bessel Bandpass Filter

In [53]: bc,ac = signal.bessel(7,2*pi*array([10.0,50.0])*1e6,btype='bandpass',analog=True)

In [54]: freqs_resp(bc,ac,6,9,mode='dB',fsize=(6,2))
grid()
ylim([-80,5]);
freqs_resp(bc,ac,6,9,mode='groupdelay',fsize=(6,2))
grid()

Second-Order Butterworth Lowpass Response

Consider a 3rd-order analog Butterworth is the 𝑠-domain having transfer function 𝐻(𝑠). Using the scipy.signal
function butter() we find the coefficients to the rational transfer function of the form:

𝐻(𝑠) =

∑︀𝑀
𝑛=0 𝑏𝑛𝑠

𝑛∑︀𝑁
𝑛=0 𝑎𝑛𝑠

𝑛
(2.37)

In [55]: b3,a3 = signal.butter(3,2*pi*1,analog=True)
freqs_resp(b3,a3,-1,2,mode='dB',fsize=(6,2))
grid()
ylim([-80,5]);
freqs_resp(b3,a3,-1,2,mode='groupdelay',fsize=(6,2))
grid()
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Obtaining the Step Response via Simulation

Time domain simulation of continuous time system can be performed using the signal.lsim() function. You
have to make sure the time step is sufficiently small relative to the filter bandwidth.

In [56]: t = arange(0,2,.0001)
xs = ss.step(t)
tout,ys,x_state = signal.lsim((b3,a3),xs,t)
plot(t,ys)
title(r'Third-Order Butterworth Step Response for $f_3 = 1$ Hz')
ylabel(r'Ste Response')
xlabel(r'Time (s)')
grid();

In [1]: %pylab inline
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d
import sk_dsp_comm.multirate_helper as mrh
import scipy.signal as signal
from IPython.display import Audio, display
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

In [2]: %config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Filter Design Using the Helper Modules

The Scipy package signal assists with the design of many digital filter types. As an alternative, here we explore the
use of the filter design modules found in scikit-dsp-comm (https://github.com/mwickert/scikit-dsp-comm).

In this note we briefly explore the use of sk_dsp_comm.fir_design_helper and sk_dsp_comm.
iir_design_helper. In the examples that follow we assume the import of these modules is made as follows:

import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d

The functions in these modules provide an easier and more consistent interface for both finte impulse response (FIR)
(linear phase) and infinite impulse response (IIR) classical designs. Functions inside these modules wrap scipy.
signal functions and also incorporate new functionality.

Design From Amplitude Response Requirements

With both fir_design_helper and iir_design_helper a design starts with amplitude response require-
ments, that is the filter passband critical frequencies, stopband critical frequencies, passband ripple, and stopband at-
tenuation. The number of taps/coefficients (FIR case) or the filter order (IIR case) needed to meet these requirements
is then determined and the filter coefficients are returned as an ndarray b for FIR, and for IIR both b and a arrays, and
a second-order sections sos 2D array, with the rows containing the corresponding cascade of second-order sections
toplogy for IIR filters.

For the FIR case we have in the 𝑧-domain

𝐻FIR(𝑧) =

𝑁∑︁
𝑘=0

𝑏𝑘𝑧
−𝑘
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with ndarray b = [𝑏0, 𝑏1, . . . , 𝑏𝑁 ]. For the IIR case we have in the 𝑧-domain

𝐻IIR(𝑧) =

∑︀𝑀
𝑘=0 𝑏𝑘𝑧

−𝑘∑︀𝑁
𝑘=1 𝑎𝑘𝑧

−𝑘
(2.38)

=

𝑁𝑠−1∏︁
𝑘=0

𝑏𝑘0 + 𝑏𝑘1𝑧
−1 + 𝑏𝑘2𝑧

−2

1 + 𝑎𝑘1𝑧−1 + 𝑎𝑘2𝑧−2
=

𝑁𝑠−1∏︁
𝑘=0

𝐻𝑘(𝑧)(2.39)

where 𝑁𝑠 = ⌊(𝑁 + 1)/2⌋. For the b/a form the coefficients are arranged as

b = [b0, b1, ..., bM-1], the numerator filter coefficients
a = [a0, a1, ..., aN-1], the denominator filter ceofficients

For the sos form each row of the 2D sos array corresponds to the coefficients of 𝐻𝑘(𝑧), as follows:

SOS_mat = [[b00, b01, b02, 1, a01, a02], #biquad 0
[b10, b11, b12, 1, a11, a12], #biquad 1
.
.

[bNs-10, bNs-11, bNs-12, 1, aNs-11, aNs-12]] #biquad Ns-1

Linear Phase FIR Filter Design

The primary focus of this module is adding the ability to design linear phase FIR filters from user friendly amplitude
response requirements.

Most digital filter design is motivated by the desire to approach an ideal filter. Recall an ideal filter will pass signals of
a certain of frequencies and block others. For both analog and digital filters the designer can choose from a variety of
approximation techniques. For digital filters the approximation techniques fall into the categories of IIR or FIR. In the
design of FIR filters two popular techniques are truncating the ideal filter impulse response and applying a window,
and optimum equiripple approximations Oppenheim2010. Frequency sampling based approaches are also popular, but
will not be considered here, even though scipy.signal supports all three. Filter design generally begins with a
specification of the desired frequency response. The filter frequency response may be stated in several ways, but am-
plitude response is the most common, e.g., state how 𝐻𝑐(𝑗Ω) or 𝐻(𝑒𝑗𝜔) = 𝐻(𝑒𝑗2𝜋𝑓/𝑓𝑠) should behave. A completed
design consists of the number of coefficients (taps) required and the coefficients themselves (double precision float or
float64 in Numpy, and float64_t in C). Figure 1, below, shows amplitude response requirements in terms of
filter gain and critical frequencies for lowpass, highpass, bandpass, and bandstop filters. The critical frequencies are
given here in terms of analog requirements in Hz. The sampling frequency is assumed to be in Hz. The passband
ripple and stopband attenuation values are in dB. Note in dB terms attenuation is the negative of gain, e.g., -60 of
stopband gain is equivalent to 60 dB of stopband attenuation.

In [3]: Image('300ppi/FIR_Lowpass_Highpass_Bandpass_Bandstop@300ppi.png',width='90%')
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There are 10 filter design functions and one plotting function available in fir_design_helper.py. Four func-
tions for designing Kaiser window based FIR filters and four functions for designing equiripple based FIR filters. Of
the eight just described, they all take in amplitude response requirements and return a coefficients array. Two of the 10
filter functions are simply wrappers around the scipy.signal function signal.firwin() for designing filters
of a specific order when one (lowpass) or two (bandpass) critical frequencies are given. The wrapper functions fix the
window type to the firwin default of hann (hanning). The remamining eight are described below in Table 1. The
plotting function provides an easy means to compare the resulting frequency response of one or more designs on a
single plot. Display modes allow gain in dB, phase in radians, group delay in samples, and group delay in seconds
for a given sampling rate. This function, freq_resp_list(), works for both FIR and IIR designs. Table 1 pro-
vides the interface details to the eight design functions where d_stop and d_pass are positive dB values and the critical
frequencies have the same unit as the sampling frequency 𝑓𝑠. These functions do not create perfect results so some
tuning of of the design parameters may be needed, in addition to bumping the filter order up or down via N_bump.

In [4]: Image('300ppi/FIR_Kaiser_Equiripple_Table@300ppi.png',width='80%')
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Design Examples

Example 1: Lowpass with 𝑓𝑠 = 1 Hz

For this 31 tap filter we choose the cutoff frequency to be 𝐹𝑐 = 𝐹𝑠/8, or in normalized form 𝑓𝑐 = 1/8.

In [5]: b_k = fir_d.firwin_kaiser_lpf(1/8,1/6,50,1.0)
b_r = fir_d.fir_remez_lpf(1/8,1/6,0.2,50,1.0)

Kaiser Win filter taps = 72.
Remez filter taps = 53.

In [6]: fir_d.freqz_resp_list([b_k,b_r],[[1],[1]],'dB',fs=1)
ylim([-80,5])
title(r'Kaiser vs Equal Ripple Lowpass')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Kaiser: %d taps' % len(b_k),r'Remez: %d taps' % len(b_r)),loc='best')
grid();

In [7]: b_k_hp = fir_d.firwin_kaiser_hpf(1/8,1/6,50,1.0)
b_r_hp = fir_d.fir_remez_hpf(1/8,1/6,0.2,50,1.0)

Kaiser Win filter taps = 72.
Remez filter taps = 53.

In [8]: fir_d.freqz_resp_list([b_k_hp,b_r_hp],[[1],[1]],'dB',fs=1)
ylim([-80,5])
title(r'Kaiser vs Equal Ripple Lowpass')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Kaiser: %d taps' % len(b_k),r'Remez: %d taps' % len(b_r)),loc='best')
grid();

In [9]: b_k_bp = fir_d.firwin_kaiser_bpf(7000,8000,14000,15000,50,48000)
b_r_bp = fir_d.fir_remez_bpf(7000,8000,14000,15000,0.2,50,48000)

Kaiser Win filter taps = 142.
Remez filter taps = 106.

In [10]: fir_d.freqz_resp_list([b_k_bp,b_r_bp],[[1],[1]],'dB',fs=48)
ylim([-80,5])
title(r'Kaiser vs Equal Ripple Bandpass')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Kaiser: %d taps' % len(b_k_bp),

r'Remez: %d taps' % len(b_r_bp)),
loc='lower right')

grid();

A Design Example Useful for Interpolation or Decimation

Here we consider a lowpass design that needs to pass frequencies from [0, 4000] Hz with a sampling rate of
96000 Hz. This scenario arises when building an interpolator using the classes of the scikit-dps-comm mod-
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ule multirate_helper.py to increase the sampling rate from 8000 Hz to 96000 Hz, or an interpolation factor of
𝐿 = 12. Note at the top of this notebook we have also have the import

import sk_dsp_comm.multirate_helper as mrh

so that some of the functionality can be accessed. For more details on the use of multirate_helper see.

Start with an equalripple design having transition band centered on 4000 Hz with passband ripple of 0.5 dB and
stopband attenuation of 60 dB.

In [11]: b_up = fir_d.fir_remez_lpf(3300,4300,0.5,60,96000)

Remez filter taps = 196.

In [12]: mr_up = mrh.multirate_FIR(b_up)

FIR filter taps = 196

• Consider the pole-zero configuration for this high-order filter

In [13]: # Take a look at the pole-zero configuration of this very
# high-order (many taps) linear phase FIR
mr_up.zplane()

• Check out the passband and stopband gains

In [14]: # Verify the passband and stopband gains are as expected
mr_up.freq_resp('db',96000)

• See that the group delay is the expected value of (𝑁taps − 1)/2 = 98 samples

In [15]: (len(b_up-1))/2

Out[15]: 98.0

In [16]: # Verify that the FIR design has constant group delay (N_taps - 1)/2 samples
mr_up.freq_resp('groupdelay_s',96000,[0,100])

The object mr_up can now be used for interpolation or decimation with a rate change factor of 12.

Traditional IIR Filter Design using the Bilinear Transform

The scipy.signal package fully supports the design of IIR digital filters from analog prototypes. IIR filters like
FIR filters, are typically designed with amplitude response requirements in mind. A collection of design func-
tions are available directly from scipy.signal for this purpose, in particular the function scipy.signal.
iirdesign(). To make the design of lowpass, highpass, bandpass, and bandstop filters consistent with the module
fir_design_helper.py the module iir_design_helper.py was written. Figure 2, below, details how the
amplitude response parameters are defined graphically.

In [17]: Image('300ppi/IIR_Lowpass_Highpass_Bandpass_Bandstop@300ppi.png',width='90%')
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Within iir_design_helper.py there are four filter design functions and a collection of supporting functions
available. The four filter design functions are used for designing lowpass, highpass, bandpass, and bandstop filters,
utilizing Butterworth, Chebshev type 1, Chebyshev type 2, and elliptical filter prototypes. See Oppenheim2010 and
ECE 5650 notes Chapter 9 for detailed design information. The function interfaces are described in Table 2.

In [18]: Image('300ppi/IIR_Table@300ppi.png',width='80%')

The filter functions return the filter coefficients in two formats:

1. Traditional transfer function form as numerator coefficients b and denominator a coefficients arrays, and

2. Cascade of biquadratic sections form using the previously introduced sos 2D array or matrix.

Both are provided to allow further analysis with either a direct form topology or the sos form. The underlying
signal.iirdesign() function also provides a third option: a list of poles and zeros. The sos form desireable
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for high precision filters, as it is more robust to coefficient quantization, in spite using double precision coefficients in
the b and a arrays.

Of the remaining support functions four are also described in Table 2, above. The most significant functions are
freqz_resp_cas_list, available for graphically comparing the frequency response over several designs, and
sos_zplane a function for plotting the pole-zero pattern. Both operate using the sos matrix. A transfer function
form (b/a) for frequency response plotting, freqz_resp_list, is also present in the module. This function was
first introduced in the FIR design section. The frequency response function plotting offers modes for gain in dB,
phase in radians, group delay in samples, and group delay in seconds, all for a given sampling rate in Hz. The pole-
zero plotting function locates pole and zeros more accurately than sk_dsp_commsigsys.zplane, as the numpy
function roots() is only solving quadratic polynomials. Also, repeated roots can be displayed as theoretically
expected, and also so noted in the graphical display by superscripts next to the pole and zero markers.

IIR Design Based on the Bilinear Transformation

There are multiple ways of designing IIR filters based on amplitude response requirements. When the desire is to
have the filter approximation follow an analog prototype such as Butterworth, Chebychev, etc., is using the bilinear
transformation. The function signal.iirdesign() described above does exactly this.

In the example below we consider lowpass amplitude response requirements and see how the filter order changes when
we choose different analog prototypes.

Example: Lowpass Design Comparison

The lowpass amplitude response requirements given 𝑓𝑠 = 48 kHz are: 1. 𝑓pass = 5 kHz 2. 𝑓stop = 8 kHz 3. Passband
ripple of 0.5 dB 4. Stopband attenuation of 60 dB

Design four filters to meet the same requirements: butter, cheby1, ,cheby2, and ellip:

In [19]: fs = 48000
f_pass = 5000
f_stop = 8000
b_but,a_but,sos_but = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter')
b_cheb1,a_cheb1,sos_cheb1 = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1')
b_cheb2,a_cheb2,sos_cheb2 = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2')
b_elli,a_elli,sos_elli = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip')

IIR butter order = 15.
IIR cheby1 order = 8.
IIR cheby2 order = 8.
IIR ellip order = 6.

Frequency Response Comparison

Here we compare the magnitude response in dB using the sos form of each filter as the input. The elliptic is the most
efficient, and actually over achieves by reaching the stopband requirement at less than 8 kHz.

In [20]: iir_d.freqz_resp_cas_list([sos_but,sos_cheb1,sos_cheb2,sos_elli],'dB',fs=48)
ylim([-80,5])
title(r'IIR Lowpass Compare')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Butter order: %d' % (len(a_but)-1),

r'Cheby1 order: %d' % (len(a_cheb1)-1),
r'Cheby2 order: %d' % (len(a_cheb2)-1),
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r'Elliptic order: %d' % (len(a_elli)-1)),loc='best')
grid();

Next plot the pole-zero configuration of just the butterworth design. Here we use the a special version of ss.zplane
that works with the sos 2D array.

In [21]: iir_d.sos_zplane(sos_but)

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:508: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
idx_N_mult = mlab.find(N_mult>1)

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:518: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
idx_D_mult = mlab.find(D_mult>1)

Out[21]: (15, 15)

Note the two plots above can also be obtained using the transfer function form via iir_d.
freqz_resp_list([b],[a],'dB',fs=48) and ss.zplane(b,a), respectively. The sos form will
yield more accurate results, as it is less sensitive to coefficient quantization. This is particularly true for the pole-zero
plot, as rooting a 15th degree polynomial is far more subject to errors than rooting a simple quadratic.

For the 15th-order Butterworth the bilinear transformation maps the expected 15 s-domain zeros at infinity to 𝑧 = −1.
If you use sk_dsp_comm.sigsys.zplane() you will find that the 15 zeros at are in a tight circle around 𝑧 = −1,
indicating polynomial rooting errors. Likewise the frequency response will be more accurate.

Signal filtering of ndarray x is done using the filter designs is done using functions from scipy.signal:

1. For transfer function form y = signal.lfilter(b,a,x)

2. For sos form y = signal.sosfilt(sos,x)

A Half-Band Filter Design to Pass up to 𝑊/2 when 𝑓𝑠 = 8 kHz

Here we consider a lowpass design that needs to pass frequencies up to 𝑓𝑠/4. Specifically when 𝑓𝑠 = 8000 Hz, the
filter passband becomes [0, 2000] Hz. Once the coefficients are found a mrh.multirate object is created to allow
further study of the filter, and ultimately implement filtering of a white noise signal.

Start with an elliptical design having transition band centered on 2000 Hz with passband ripple of 0.5 dB and stopband
attenuation of 80 dB. The transition bandwidth is set to 100 Hz, with 50 Hz on either side of 2000 Hz.

In [22]: # Elliptic IIR Lowpass
b_lp,a_lp,sos_lp = iir_d.IIR_lpf(1950,2050,0.5,80,8000.,'ellip')
mr_lp = mrh.multirate_IIR(sos_lp)

IIR ellip order = 11.
IIR filter order = 11

In [23]: mr_lp.freq_resp('db',8000)

Pass Gaussian white noise of variance 𝜎2
𝑥 = 1 through the filter. Use a lot of samples so the spectral estimate can

accurately form 𝑆𝑦(𝑓) = 𝜎2
𝑥 · |𝐻(𝑒𝑗2𝜋𝑓/𝑓𝑠)|2 = |𝐻(𝑒𝑗2𝜋𝑓/𝑓𝑠)|2.

In [24]: x = randn(1000000)
y = mr_lp.filter(x)
psd(x,2**10,8000);
psd(y,2**10,8000);
title(r'Filtering White Noise Having $\sigma_x^2 = 1$')
legend(('Input PSD','Output PSD'),loc='best')
ylim([-130,-30])
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Out[24]: (-130, -30)

In [25]: fs = 8000
print('Expected PSD of %2.3f dB/Hz' % (0-10*log10(fs),))

Expected PSD of -39.031 dB/Hz

Amplitude Response Bandpass Design

Here we consider FIR and IIR bandpass designs for use in an SSB demodulator to remove potential adjacent channel
signals sitting either side of a frequency band running from 23 kHz to 24 kHz.

In [26]: b_rec_bpf1 = fir_d.fir_remez_bpf(23000,24000,28000,29000,0.5,70,96000,8)
fir_d.freqz_resp_list([b_rec_bpf1],[1],mode='dB',fs=96000)
ylim([-80, 5])
grid();

Remez filter taps = 241.

The group delay is flat (constant) by virture of the design having linear phase.

In [27]: b_rec_bpf1 = fir_d.fir_remez_bpf(23000,24000,28000,29000,0.5,70,96000,8)
fir_d.freqz_resp_list([b_rec_bpf1],[1],mode='groupdelay_s',fs=96000)
grid();

Remez filter taps = 241.

Compare the FIR design with an elliptical design:

In [28]: b_rec_bpf2,a_rec_bpf2,sos_rec_bpf2 = iir_d.IIR_bpf(23000,24000,28000,29000,
0.5,70,96000,'ellip')

with np.errstate(divide='ignore'):
iir_d.freqz_resp_cas_list([sos_rec_bpf2],mode='dB',fs=96000)

ylim([-80, 5])
grid();

IIR ellip order = 14.

This high order elliptic has a nice tight amplitude response for minimal coefficients, but the group delay is terrible:

In [29]: with np.errstate(divide='ignore', invalid='ignore'): #manage singularity warnings
iir_d.freqz_resp_cas_list([sos_rec_bpf2],mode='groupdelay_s',fs=96000)

#ylim([-80, 5])
grid();

/home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.0.0/lib/python3.5/site-packages/scikit_dsp_comm-0.0.5-py3.5.egg/sk_dsp_comm/iir_design_helper.py:379: MatplotlibDeprecationWarning: The find function was deprecated in Matplotlib 2.2 and will be removed in 3.1.
idx = pylab.find(20*np.log10(H[:-1]) < -400)

In [1]: %pylab inline
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d
import sk_dsp_comm.multirate_helper as mrh
import scipy.signal as signal
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from IPython.display import Audio, display
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

In [2]: %config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Multirate Signal Processing Using multirate_helper

In this section the classes multirate_FIR and multirate_IIR, found in the module sk_dsp_comm.
multirate_helper, are discussed with the aim of seeing how they can be used to filter, interpolate (upsample
and filter), and decimate (filter and downsample) discrete time signals. Fundamentally the processing consists of two
elements: (1) and upsampler or downsampler and (2) a lowpass filter.

Fundamentally this modules provides classes to change the sampling rate by an integer factor, either up, interpolation
or down, decimation, with integrated filtering to supress spectral images or aliases, respectively. The top level block
diagram of the interpolator and decimator are given in the following two figures. The frequencies given in the figures
assume that the interpolator is rate chainging from 8 ksps to 96 ksps (𝐿 = 12) and the decimator is rate changing from
96 ksps to 8 ksps (𝑀 = 12). This is for example purposes only. The FIR/IIR filter cutoff frequency will in general
be 𝑓𝑐 = 𝑓s,out/(2𝐿) for the decimator and 𝑓𝑐 = 𝑓s,in/(2𝑀). The primitives to implement the classes are available in
sk_dsp_comm.sigsys and scipy.signal.

In [3]: Image('300ppi/Interpolator_Top_Level@300ppi.png',width='60%')

In [4]: Image('300ppi/Decimator_Top_Level@300ppi.png',width='60%')

The upsample block, shown above with arrow pointing up and integer 𝐿 = 12 next to the arrow, takes the input
sequence and produces the output sequence by inserting 𝐿 − 1 (as shown here 11) zero samples between each input
sample. The downsample block, shown above with arrow pointing down and integer 𝑀 = 12 next to the arrow, takes
the input sequence and retains at the output sequence every 𝑀 th (as shown here 12th) sample.
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The impact of these blocks in the frequency domain is a little harder to explain. In words, the spectrum at the output
of the upsampler is compressed by the factor 𝐿, such that it will contain 𝐿 spectral images, including the fundamental
image centered at 𝑓 = 0, evenly spaced up to the sampling 𝑓𝑠. Overall the spectrum of 𝑥up[𝑛] is of course periodic with
respect to the sampling rate. The lowpass filter interpolates signal sample values from the non-zero samples where
the zero samples reside. It is this interpolation that effectively removed or suppresses the spectral images outside the
interval |𝑓 | > 𝑓𝑠/(2𝐿).

For the downsampler the input spectrum is stretched along the frequency axis by the factor 𝑀 , with aliasing from
frequency bands outside |𝑓 | < 𝑓𝑠/(2𝑀). To avoid aliasing the lowpass filter blocks input signals for 𝑓 > 𝑓𝑠/(2𝑀).

To get started using the module you will need an import similar to:

import sk_dsp_comm.multirate_helper as mrh

The rate_change Class

We start with the description of a third class, mrh.rate_change, which is simplistic, offering little user interaction,
but automatically designs the required lowpass filter you see in the above block diagrams. Below is a table which
describes this class:

In [5]: Image('300ppi/Multirate_Table1@300ppi.png',width='85%')

This class is used in the analog modulation demos for the ECE 4625/5625 Chapter 3 Jupyter notebook. Using this class
you can quickly create a interpolation or decimation block with the necessary lowpass filter automatically designed
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and implemented. Fine tuning of the filter is limited to choosing the filter order and the cutoff frequency as a fraction of
the signal bandwidth given the rate change integer, 𝐿 or 𝑀 . The filter type is also limited to Butterworth or Chebyshev
type 1 having passband ripple of 0.05 dB.

A Simple Example

Pass a sinusoidal signal through an 𝐿 = 4 interpolator. Verify that spectral images occur with the use of the interpola-
tion lowpass filter.

In [6]: fs_in = 8000
M = 4
fs_out = M*fs_in
rc1 = mrh.rate_change(M) # Rate change by 4
n = arange(0,1000)
x = cos(2*pi*1000/fs_in*n)
x_up = ss.upsample(x,4)
y = rc1.up(x)

Time Domain

In [7]: subplot(211)
stem(n[500:550],x_up[500:550]);
ylabel(r'$x_{up}[n]$')
title(r'Upsample by $L=4$ Output')
#ylim(-100,-10)
subplot(212)
stem(n[500:550],y[500:550]);
ylabel(r'$y[n]$')
xlabel(r'')
title(r'Interpolate by $L=4$ Output')
#ylim(-100,-10)
tight_layout()

• Clearly the lowpass interpolation filter has done a good job of filling in values for the zero samples

Frequency Domain

In [8]: subplot(211)
psd(x_up,2**10,fs_out);
ylabel(r'PSD (dB)')
title(r'Upsample by $L=4$ Output')
ylim(-100,-10)
subplot(212)
psd(y,2**10,fs_out);
ylabel(r'PSD (dB)')
title(r'Interpolate by $L=4$ Output')
ylim(-100,-10)
tight_layout()

• The filtering action of the LPF does its best to suppress the images at 7000, 9000, and 15000 Hz.
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The multirate_FIR Class

With this class you implement an object that can filter, interpolate, or decimate a signal. Additionally support methods
drill into the characteristics of the lowpass filter at the heart of the processing block. To use this class the user
must supply FIR filter coefficients that implement a lowpass filter with cutoff frequency appropriate for the desired
interpolation of decimation factor. The module sk_dsp_com.FIR_design_helper is capable of delivering the
need filter coefficients array. See FIR design helper notes for multirate filter design examples.

With FIR coefficients in hand it is an easy matter to create an multirate FIR object capable of filtering, interpolation,
or decimation. The details of the class interface are given in Table 2 below.

In [9]: Image('300ppi/Multirate_Table2@300ppi.png',width='85%')
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Notice that the class also provides a means to obtain frequency response plots and pole-zero plots directly from the
instantiated multirate objects.
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FIR Interpolator Design Example

Here we take the earlier lowpass filter designed to interpolate a signal being upsampled from 𝑓𝑠1 = 8000 kHz to
𝑓𝑠2 = 96 kHz. The upsampling factor is 𝐿 = 𝑓𝑠2/𝑓𝑠1 = 12. The ideal interpolation filter should cutoff at 𝑓𝑠1/2 =
𝑓𝑠2/(2 · 12) = 8000/2 = 4000 Hz.

Recall the upsampler (y = ss.upsampler(x, L)) inserts 𝐿 − 1 samples between each input sample. In the
frequency domain the zero insertion replicates the input spectrum on [0, 𝑓𝑠1/2] 𝐿 times over the interval [0, 𝑓𝑠2]
(equivalently 𝐿/2 times on the inteval [0𝑓𝑠2/2]. The lowpass interpolation filter serves to removes the images above
𝑓𝑠2/(2𝐿) in the frequency domain and in so doing filling in the zeros samples with waveform interpolants in the time
domain.

In [10]: # Design the filter core for an interpolator used in changing the sampling rate from 8000 Hz
# to 96000 Hz
b_up = fir_d.fir_remez_lpf(3300,4300,0.5,60,96000)
# Create the multirate object
mrh_up = mrh.multirate_FIR(b_up)

Remez filter taps = 196.
FIR filter taps = 196

As an input consider a sinusoid at 1 kHz and observe the interpolator output spectrum compared with the input
spectrum.

In [11]: # Sinusoidal test signal
n = arange(10000)
x = cos(2*pi*1000/8000*n)
# Interpolate by 12 (upsample by 12 followed by lowpass filter)
y = mrh_up.up(x,12)

In [12]: # Plot the results
subplot(211)
psd(x,2**12,8000);
title(r'1 KHz Sinusoid Input to $L=12$ Interpolator')
ylabel(r'PSD (dB)')
ylim([-100,0])
subplot(212)
psd(y,2**12,12*8000)
title(r'1 KHz Sinusoid Output from $L=12$ Interpolator')
ylabel(r'PSD (dB)')
ylim([-100,0])
tight_layout()

In the above spectrum plots notice that images of the input 1 kHz sinusoid are down ≃ 60 dB, which is precisely the
stop band attenuation provided by the interpolation filter. The variation is due to the stopband ripple.

The multirate_IIR Class

With this class, as with multirate_FIR you implement an object that can filter, interpolate, or decimate a signal.
The filter in this case is a user supplied IIR filter in second-order sections (sos) form. Additionally support methods
drill into the characteristics of the lowpass filter at the heart of the procssing block. The module sk_dsp_com.
IIR_design_helper is capable of delivering the need filter coefficients array. See IIR design helper notes for
multirate filter design examples.

With IIR coefficients in hand it is an easy matter to create an multirate IIR object capable of filtering, interpolation, or
decimation. The details of the class interface are given in Table 3 below.

In [13]: Image('300ppi/Multirate_Table3@300ppi.png',width='85%')
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IIR Decimator Design Example

Whan a signal is decimated the signal is first lowpass filtered then downsampled. The lowpass filter serves to prevent
aliasing as the sampling rate is reduced. Downsampling by 𝑀 (y = ss.downsample(x, M)) removes 𝑀 − 1
sampling for every 𝑀 sampling input or equivalently retains one sample out of 𝑀 . The lowpass prefilter has cutoff
frequency equal to the folding frequency of the output sampling rate, i.e., 𝑓𝑐 = 𝑓𝑠2/2. Note avoid confusion with the
project requirements, where the decimator is needed to take a rate 𝑓𝑠2 signal back to 𝑓𝑠1, let the input sampling rate
be 𝑓𝑠2 = 96000 HZ and the output sampling rate be 𝑓𝑠1 = 8000 Hz. The input sampling rate is 𝑀 times the output
rate, i.e., 𝑓𝑠2 = 𝑀𝑓𝑠1, so you design the lowpass filter to have cutoff 𝑓𝑐 = 𝑓𝑠2/(2 · 𝐿).

ECE 5625 Important Observation: In the coherent SSB demodulator of Project 1, the decimator can be conveniently
integrated with the lowpass filter that serves to remove the double frequency term.

In the example that follows a Chebyshev type 1 lowpass filter is designed to have cutoff around 4000 Hz. A sinusoid
is used as a test input signal at sampling rate 96000 Hz.

In [14]: # Design the filter core for a decimator used in changing the
# sampling rate from 96000 Hz to 8000 Hz
b_dn, a_dn, sos_dn = iir_d.IIR_lpf(3300,4300,0.5,60,96000,'cheby1')
# Create the multirate object
mrh_dn = mrh.multirate_IIR(sos_dn)
mrh_dn.freq_resp('dB',96000)
title(r'Decimation Filter Frequency Response - Magnitude');

IIR cheby1 order = 12.
IIR filter order = 12

• Note the Chebyshev lowpass filter design above is very efficient compared with the 196-tap FIR lowpass de-
signed for use in the interpolator. It is perhaps a better overall choice. The FIR has linear phase and the IIR filter
does not, but for the project this is not really an issue.

As an input consider a sinusoid at 1 kHz and observe the interpolator output spectrum compared with the input
spectrum.

In [15]: # Sinusoidal test signal
n = arange(100000)
x = cos(2*pi*1000/96000*n)
# Decimate by 12 (lowpass filter followed by downsample by 12)
y = mrh_dn.dn(x,12)

In [16]: # Plot the results
subplot(211)
psd(x,2**12,96000);
title(r'1 KHz Sinusoid Input to $M=12$ Decimator')
ylabel(r'PSD (dB)')
ylim([-100,0])
subplot(212)
psd(y,2**12,8000)
title(r'1 KHz Sinusoid Output from $M=12$ Decimator')
ylabel(r'PSD (dB)')
ylim([-100,0])
tight_layout()

In [1]: %pylab inline
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.pyaudio_helper as pah
import sk_dsp_comm.fir_design_helper as fir_d
import scipy.signal as signal
import scipy.io as io
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from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets
from IPython.display import Audio, display
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

In [2]: pylab.rcParams['savefig.dpi'] = 100 # default 72
%config InlineBackend.figure_formats=['svg'] # SVG inline viewing

Introduction

A simplified block diagram of PyAudio streaming-based (nonblocking) signal processing when using
pyaudio_helper and ipython widgets.

In [3]: Image("audio_files/pyaudio_dsp_IO.png", width="90%")

Available Audio I/O Devices

If you add or delete devices by plugging or unplugging USB audio ibterface, this list becomdes invalid. Restart the
kernel and run again to get the correct device index list. For two channel apps both the input and output devices must
support two channels. For the Sabrent USB audio devices, which has one input and two outputs, Windows for example
may improperly list the devices as having two inputs.

pah.available_devices()

Index 0 device name = Built-in Microph, inputs = 2, outputs = 0

Index 1 device name = Built-in Output, inputs = 0, outputs = 2

Real-Time Loop Through

Here we set up a simple callback function that passes the input samples directly to the output. The module
pyaudio_support provides a class for managing a pyaudio stream object, capturing the samples processed by
the callback function, and collection of performance metrics. Once the callback function is written/declared
a DSP_io_stream object can be created and then the stream(Tsec) method can be executed to start the in-
put/output processing, e.g.,
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import pyaudio_helper as pah

DSP_IO = pah.DSP_io_stream(callback,in_idx, out_idx)
DSP_IO.interactive_stream(Tsec = 2, numChan = 1)

where in_idx is the index of the chosen input device found using available_devices() and similarly
out_idx is the index of the chosen output device.

• The callback function must be written first as the function name used by the object to call the callback.

No globals required here as there is no instrumentation configured, externally defined algorithm coefficients, and no
widgets being used.

In [4]: # define a pass through, y = x, callback
def callback(in_data, frame_count, time_info, status):

# convert byte data to ndarray
in_data_nda = np.frombuffer(in_data, dtype=np.int16)
#***********************************************
# DSP operations here
# Here we simply pass the input to the output, i.e.
# y[n] = x[n]
x = in_data_nda.astype(float32)
y = x
# Typically more DSP code here
#
#***********************************************
# Convert from float back to int16
y = y.astype(int16)
# Convert ndarray back to bytes
return y.tobytes(), pah.pyaudio.paContinue

This callback makes use of the instrumentation capabilities of the DSP_io_stream and also has a simple lowpass
filter waiting in-the-wings if a line of code in commented out and a following line is uncomments, e.g.,

#y = x
# Typically more DSP code here
y, zi = signal.lfilter(b,a,x,zi=zi) # for FIR or simple IIR

Notice that globals are now used for the DSP_IO object, the filter coefficients in arrays, a and b, and also the filter
states held in the array zi. In its present form te filtering is commented out, but can be uncommented to allow a simple
1st-order IIR lowpass filter to operate on one channel of audio streaming through the system.

In [5]: # Add a simple IIR LPF
fs = 48000 # Assummed sampling rate
f3 = 1000 # Hz
a = [1, -exp(-2*pi*f3/fs)]
b = [1 - exp(-2*pi*f3/fs)]
zi = signal.lfiltic(b,a,[0])

In [6]: # define a pass through, y = x, callback
def callback(in_data, frame_length, time_info, status):

global DSP_IO, b, a, zi
DSP_IO.DSP_callback_tic()
# convert byte data to ndarray
in_data_nda = np.frombuffer(in_data, dtype=np.int16)
#***********************************************
# DSP operations here
# Here we apply a linear filter to the input
x = in_data_nda.astype(float32)
y = x
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# Typically more DSP code here
#y, zi = signal.lfilter(b,a,x,zi=zi) # for FIR or simple IIR
#***********************************************
# Save data for later analysis
# accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples(y)
#***********************************************
# Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
# Convert ndarray back to bytes
#return (in_data_nda.tobytes(), pyaudio.paContinue)
return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback,in_idx=0,out_idx=1,fs=48000,Tcapture=0)

Index 0 device name = Built-in Microph, inputs = 2, outputs = 0

Index 1 device name = Built-in Output, inputs = 0, outputs = 2

DSP_IO.interactive_stream(Tsec=0,numChan=1)

In [7]: Image("audio_files/start_stop_stream.png", width='55%')

With the iMic plugged in the input/output device indices can be reconfigured to use the iMic index for both
the input output streams. The Analog Discovery (AD2) is then used to drive a white noise test signal into the
ADC and capture the output from the DAC. This allows us to measure the ADC-DAC frequency response using
a long-term time average spectral estimate capabilities of the AD2. A second test capture is to use DSP_IO.
DSP_capture_add_samples(y) to capture the response of the ADC alone, and perform spectral analysis here
in the Jupyter notebook. For this capture we set Tcapture=20s two cells above and Tsec=20 one cell above. A
comparison of the ADC-alone and ADC-DAC spectrum normalized to look like the frequency response is done in the
cell below.

In [8]: f_AD,Mag_AD = loadtxt('audio_files/Loop_through_noise_SA_iMic.csv',
delimiter=',',skiprows=6,unpack=True)

plot(f_AD,Mag_AD-Mag_AD[100])
ylim([-10,5])
xlim([0,20e3])
ylabel(r'ADC Gain Flatness (dB)')
xlabel(r'Frequency (Hz)')
legend((r'ADC-DAC from AD2 SA dB Avg',))
title(r'Loop Through Gain Flatness using iMic at $f_s = 48$ kHz')
grid();

The callback stats when capturing data using DSP_IO.DSP_capture_add_samples(y) and a plot of the time
domain samples.

Nstop = 1000
plot(arange(0,len(DSP_IO.data_capture[:Nstop]))/48000,DSP_IO.data_capture[:Nstop])
DSP_IO.stream_stats()
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Note for a attributes used in the above examples the frame_length is always 1024 samples and the sampling rate
𝑓𝑠 = 48 ksps. The ideal callback period is this

𝑇𝑐𝑏 =
1024

480100
= 21.33 (ms)

Next consider what the captures tic and toc data revels about the processing. Calling the method
cb_active_plot() produces a plot similar to what an electrical engineer would see what using a logic ana-
lyzer to show the time spent in an interrupt service routine of an embedded system. The latency is also evident. You
expect to see a minimum latency of two frame lengths (input buffer fill and output buffer fill),e.g.,

𝑇latency >= 2 × 1024

48000
× 1000 = 42.6 (ms)

The host processor is multitasking, so the latency can be even greater. A true real-time DSP system would give the
signal processing high priority and hence much lower is expected, particularly if the frame_length can be made
small.

Real-Time Filtering

Here we set up a callback function that filters the input samples and then sends them to the output.

import pyaudio_helper as pah

DSP_IO = pah.DSP_io_stream(callback,in_idx, out_idx)
DSP_IO.interactive_stream(2,1)

where in_idx is the index of the chosen input device found using available_devices() and similarly
out_idx is the index of the chosen output device.

• The callback function must be written first as the function name is used by the object to call the callback

• To demonstrate this we first design some filters that can be used in testing

In [9]: b = fir_d.fir_remez_bpf(2700,3200,4800,5300,.5,50,48000,18)
a = [1]
fir_d.freqz_resp_list([b],[1],'dB',48000)
ylim([-60,5])
grid();
zi = signal.lfiltic(b,a,[0])

Remez filter taps = 192.

In [10]: f_AD,Mag_AD = loadtxt('audio_files/FIR_BPF_2700_3200_4800_5300_p5dB_50dB_48k.csv',
delimiter=',',skiprows=6,unpack=True)

plot(f_AD,Mag_AD-max(Mag_AD)+1)
f = arange(0,20000,10)
w,H_BPF = signal.freqz(b,1,2*pi*f/48000)
plot(f,20*log10(abs(H_BPF)))
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
legend((r'AD2 Noise Measured',r'Design Theory'))
title(r'4 kHz 182-Tap FIR Bandpass Design at $f_s = 48$ kHz')
ylim([-60,5])
xlim([2000,8000])
grid();
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In [11]: # Design an IIR Notch
b, a = ss.fir_iir_notch(2000,48000,r= 0.9)
fir_d.freqz_resp_list([b],[a],'dB',48000,4096)
ylim([-60,5])
grid();
zi = signal.lfiltic(b,a,[0])

Create some global variables for the filter coefficients and the filter state array (recall that a filter has memory).

In [12]: # define callback (#2)
def callback2(in_data, frame_count, time_info, status):

global DSP_IO, b, a, zi
DSP_IO.DSP_callback_tic()
# convert byte data to ndarray
in_data_nda = np.frombuffer(in_data, dtype=np.int16)
#***********************************************
# DSP operations here
# Here we apply a linear filter to the input
x = 5*in_data_nda.astype(float32)
#y = x
# The filter state/(memory), zi, must be maintained from frame-to-frame
# for FIR or simple IIR
y, zi = signal.lfilter(b,a,x,zi=zi)
# for IIR use second-order sections
#y, zi = signal.sosfilt(sos,x,zi=zi)
#***********************************************
# Save data for later analysis
# accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples(y)
#***********************************************
# Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback2,2,2,fs=48000,Tcapture=0)

DSP_IO.interactive_stream(Tsec=0,numChan=1)

In [13]: Image("audio_files/start_stop_stream.png", width='55%')

Playback Only Using an Audio Loop

A playback audio loop is created using the pah.loop_audio class filled with samples input from a wav file. In the
example below we take a two-channel (stereo) wav file and convert to one channel.

In [14]: # define callback (3)
# Here we configure the callback to play back a wav file
def callback3(in_data, frame_count, time_info, status):
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global DSP_IO, x
DSP_IO.DSP_callback_tic()

# Ignore in_data when generating output only
#***********************************************
global x
# Note wav is scaled to [-1,1] so need to rescale to int16
y = 32767*x.get_samples(frame_count)
# Perform real-time DSP here if desired
#
#***********************************************
# Save data for later analysis
# accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples(y)
#***********************************************
# Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
return y.tobytes(), pah.pyaudio.paContinue

fs, x_wav2 = ss.from_wav('Music_Test.wav')
x_wav = (x_wav2[:,0] + x_wav2[:,1])/2
x = pah.loop_audio(x_wav)
DSP_IO = pah.DSP_io_stream(callback3,0,1,fs=44100,Tcapture=2)
DSP_IO.interactive_stream(20) # play for 20s but capture only the last 2s

In [15]: Image("audio_files/start_stop_stream.png", width='55%')

Npts = 96000
Nstart = 0
plot(arange(len(DSP_IO.data_capture[Nstart:Nstart+Npts]))*1000/44100,

DSP_IO.data_capture[Nstart:Nstart+Npts]/2**(16-1))
title(r'A Portion of the capture buffer')
ylabel(r'Normalized Amplitude')
xlabel(r'Time (ms)')
grid();

In [16]: Image("audio_files/music_buffer_plot.png", width="75%")

54 Chapter 2. scikit-dsp-comm



scikit-dsp-comm Documentation, Release 0.0.5

Finally, the spectrum of the output signal. To apply custom scaling we use a variation of psd() found in the sigsys
module. If we are plotting the spectrum of white noise sent through a filter, the output PSD will be of the form
𝜎2
𝑤|𝐻(𝑒𝑗2𝜋𝑓/𝑓𝑠)|2, where 𝜎2

𝑤 is the variance of the noise driving the filter. You may choose to overlay a plot of

Widgets Examples

Stereo Gain Sliders

In [17]: L_gain = widgets.FloatSlider(description = 'L Gain',
continuous_update = True,
value = 1.0,
min = 0.0,
max = 2.0,
step = 0.01,
orientation = 'vertical')

R_gain = widgets.FloatSlider(description = 'R Gain',
continuous_update = True,
value = 1.0,
min = 0.0,
max = 2.0,
step = 0.01,
orientation = 'vertical')

#widgets.HBox([L_gain, R_gain])

In [18]: # L and Right Gain Sliders
def callback(in_data, frame_count, time_info, status):

global DSP_IO, L_gain, R_gain

2.6. Examples 55



scikit-dsp-comm Documentation, Release 0.0.5

DSP_IO.DSP_callback_tic()
# convert byte data to ndarray
in_data_nda = np.frombuffer(in_data, dtype=np.int16)
# separate left and right data
x_left,x_right = DSP_IO.get_LR(in_data_nda.astype(float32))
#***********************************************
# DSP operations here
y_left = x_left*L_gain.value
y_right = x_right*R_gain.value

#***********************************************
# Pack left and right data together
y = DSP_IO.pack_LR(y_left,y_right)
# Typically more DSP code here
#***********************************************
# Save data for later analysis
# accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples_stereo(y_left,y_right)
#***********************************************
# Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
# Convert ndarray back to bytes
#return (in_data_nda.tobytes(), pyaudio.paContinue)
return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback,0,1,fs=48000,Tcapture=0)
DSP_IO.interactive_stream(0,2)
widgets.HBox([L_gain, R_gain])

In [19]: Image("audio_files/left_right_gain.png", width="65%")

56 Chapter 2. scikit-dsp-comm



scikit-dsp-comm Documentation, Release 0.0.5

Cross Panning

In [20]: panning = widgets.FloatSlider(description = 'Panning (%)',
continuous_update = True, # Continuous updates
value = 50.0,
min = 0.0,
max = 100.0,
step = 0.1,
orientation = 'horizontal')

#display(panning)

In [21]: # Panning
def callback(in_data, frame_count, time_info, status):

global DSP_IO, panning
DSP_IO.DSP_callback_tic()
# convert byte data to ndarray
in_data_nda = np.frombuffer(in_data, dtype=np.int16)
# separate left and right data
x_left,x_right = DSP_IO.get_LR(in_data_nda.astype(float32))
#***********************************************
# DSP operations here
y_left = (100-panning.value)/100*x_left \

+ panning.value/100*x_right
y_right = panning.value/100*x_left \

+ (100-panning.value)/100*x_right

#***********************************************
# Pack left and right data together
y = DSP_IO.pack_LR(y_left,y_right)
# Typically more DSP code here
#***********************************************
# Save data for later analysis
# accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples_stereo(y_left,y_right)
#***********************************************
# Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
# Convert ndarray back to bytes
#return (in_data_nda.tobytes(), pyaudio.paContinue)
return y.tobytes(), pah.pyaudio.paContinue

FRAMES = 512
# Create streaming object
DSP_IO = pah.DSP_io_stream(callback,0,1,

fs=48000,
frame_length = FRAMES,
Tcapture=0)

# interactive_stream runs in a thread
#so widget can be used
DSP_IO.interactive_stream(0,2)

# display panning widget
display(panning)

In [22]: Image("audio_files/cross_panning.png", width='55%')
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Three Band Equalizer

Here we consider a three-band equalizer operating on a music loop. Each peaking filter has system function in the
𝑧-domain defined by

𝐻𝑝𝑘(𝑧) = 𝐶pk
1 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2

where the filter coefficients are given by

𝐶pk =
1 + 𝑘𝑞𝜇

1 + 𝑘𝑞
(2.40)

𝑘𝑞 =
4

1 + 𝜇
tan

(︂
2𝜋𝑓𝑐/𝑓𝑠

2𝑄

)︂
(2.41)

𝑏1 =
−2 cos(2𝜋𝑓𝑐/𝑓𝑠)

1 + 𝑘𝑞𝜇
(2.42)

𝑏2 =
1 − 𝑘𝑞𝜇

1 + 𝑘𝑞𝜇
(2.43)

𝑎1 =
−2 cos(2𝜋𝑓𝑐/𝑓𝑠)

1 + 𝑘𝑞
(2.44)

𝑎2 =
1 − 𝑘𝑞
1 + 𝑘𝑞
(2.45)

where

𝜇 = 10𝐺dB/20, 𝑄 ∈ [2, 10]

and and 𝑓𝑐 is the center frequency in Hz relative to sampling rate 𝑓𝑠 in Hz, and 𝐺dB is the peaking filter gain in dB.
Conveniently, the function peaking is available in the module sk_dsp_comm.sigsys.

In [23]: band1 = widgets.FloatSlider(description = '100 Hz',
continuous_update = True, # Continuous updates
value = 20.0,
min = -20.0,
max = 20.0,
step = 1,
orientation = 'vertical')

band2 = widgets.FloatSlider(description = '1000 Hz',
continuous_update = True, # Continuous updates
value = 10.0,
min = -20.0,
max = 20.0,
step = 1,
orientation = 'vertical')
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band3 = widgets.FloatSlider(description = '8000 Hz',
continuous_update = True, # Continuous updates
value = -10.0,
min = -20.0,
max = 20.0,
step = 1,
orientation = 'vertical')

Gain = widgets.FloatSlider(description = 'Gain',
continuous_update = True,
value = 0.2,
min = 0.0,
max = 2.0,
step = 0.01,
orientation = 'vertical')

#widgets.HBox([Gain,band1,band2,band3])

In [24]: b_b1,a_b1 = ss.peaking(band1.value,100,Q=3.5,fs=48000)
zi_b1 = signal.lfiltic(b_b1,a_b1,[0])
b_b2,a_b2 = ss.peaking(band2.value,1000,Q=3.5,fs=48000)
zi_b2 = signal.lfiltic(b_b2,a_b2,[0])
b_b3,a_b3 = ss.peaking(band3.value,8000,Q=3.5,fs=48000)
zi_b3 = signal.lfiltic(b_b3,a_b3,[0])
b_12,a_12 = ss.cascade_filters(b_b1,a_b1,b_b2,a_b2)
b_123,a_123 = ss.cascade_filters(b_12,a_12,b_b3,a_b3)
f = logspace(log10(50),log10(10000),100)
w,H_123 = signal.freqz(b_123,a_123,2*pi*f/48000)
semilogx(f,20*log10(abs(H_123)))
ylim([-20,20])
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
grid();

In [25]: # define a pass through, y = x, callback
def callback(in_data, frame_count, time_info, status):

global DSP_IO, zi_b1,zi_b2,zi_b3, x
global Gain, band1, band2, band3
DSP_IO.DSP_callback_tic()
# convert byte data to ndarray
in_data_nda = np.frombuffer(in_data, dtype=np.int16)
#***********************************************
# DSP operations here
# Here we apply a linear filter to the input
#x = in_data_nda.astype(float32)
x = Gain.value*20000*x_loop.get_samples(frame_count)
# DSP code here
b_b1,a_b1 = ss.peaking(band1.value,100,Q=3.5,fs=48000)
z1, zi_b1 = signal.lfilter(b_b1,a_b1,x,zi=zi_b1)
b_b2,a_b2 = ss.peaking(band2.value,1000,Q=3.5,fs=48000)
z2, zi_b2 = signal.lfilter(b_b2,a_b2,z1,zi=zi_b2)
b_b3,a_b3 = ss.peaking(band3.value,8000,Q=3.5,fs=48000)
y, zi_b3 = signal.lfilter(b_b3,a_b3,z2,zi=zi_b3)
#***********************************************
# Save data for later analysis
# accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples(y)
#***********************************************
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# Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
# Convert ndarray back to bytes
#return (in_data_nda.tobytes(), pyaudio.paContinue)
return y.tobytes(), pah.pyaudio.paContinue

fs, x_wav2 = ss.from_wav('audio_files/Music_Test.wav')
x_wav = (x_wav2[:,0] + x_wav2[:,1])/2
x_loop = pah.loop_audio(x_wav)
DSP_IO = pah.DSP_io_stream(callback,0,1,fs=44100,Tcapture=0)
DSP_IO.interactive_stream(0,1)
widgets.HBox([Gain,band1,band2,band3])

In [26]: Image("audio_files/three_band_widgets.png", width="55%")

In [27]: f_AD,Mag_AD = loadtxt('audio_files/ThreeBand_Peak_100_p20_1k_p10_8k_m10_fs_48k.csv',
delimiter=',',skiprows=6,unpack=True)

semilogx(f_AD,Mag_AD+55)
semilogx(f,20*log10(abs(H_123)))
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
legend((r'AD2 Noise Measured',r'Design Theory'))
title(r'Three Band Equalizer: $f_{center} = [100,1000,800]$, $Q = 3.5$')
ylim([-20,20])
xlim([50,10000])
grid();

In [28]:
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2.6.2 coeff2header

Digital Filter Coefficient Conversion to C Header Files

Copyright (c) March 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

sk_dsp_comm.coeff2header.CA_code_header(fname_out, Nca)
Write 1023 bit CA (Gold) Code Header Files

Mark Wickert February 2015

sk_dsp_comm.coeff2header.FIR_fix_header(fname_out, h)
Write FIR Fixed-Point Filter Header Files

Mark Wickert February 2015

sk_dsp_comm.coeff2header.FIR_header(fname_out, h)
Write FIR Filter Header Files

Mark Wickert February 2015

sk_dsp_comm.coeff2header.IIR_sos_header(fname_out, SOS_mat)
Write IIR SOS Header Files File format is compatible with CMSIS-DSP IIR Directform II Filter Functions

Mark Wickert March 2015-October 2016

sk_dsp_comm.coeff2header.freqz_resp_list(b, a=array([1]), mode=’dB’, fs=1.0, Npts=1024,
fsize=(6, 4))

A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced
using matplotlib

freq_resp(self,mode = ‘dB’,Npts = 1024)

A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced
using matplotlib

freqz_resp(b,a=[1],mode = ‘dB’,Npts = 1024,fsize=(6,4))

Parameters

b [ndarray of numerator coefficients]
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a [ndarray of denominator coefficents]

mode [display mode: ‘dB’ magnitude, ‘phase’ in radians, or] ‘groupdelay_s’ in samples and
‘groupdelay_t’ in sec, all versus frequency in Hz

Npts [number of points to plot; default is 1024]

fsize [figure size; defult is (6,4) inches]

Mark Wickert, January 2015

2.6.3 digitalcom

Digital Communications Function Module

Copyright (c) March 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

sk_dsp_comm.digitalcom.AWGN_chan(x_bits, EBN0_dB)

Parameters

x_bits [serial bit stream of 0/1 values.]

EBNO_dB [Energy per bit to noise power density ratio in dB of the serial bit stream sent
through the AWGN channel. Frequently we equate EBN0 to SNR in link budget calcu-
lations]

Returns

y_bits [Received serial bit stream following hard decisions. This bit will have bit errors. To
check the estimated bit error probability use BPSK_BEP() or simply]

>> Pe_est = sum(xor(x_bits,y_bits))/length(x_bits);

Mark Wickert, March 2015

sk_dsp_comm.digitalcom.BPSK_BEP(tx_data, rx_data, Ncorr=1024, Ntransient=0)
Count bit errors between a transmitted and received BPSK signal. Time delay between streams is detected as
well as ambiquity resolution due to carrier phase lock offsets of 𝑘 * 𝜋, k=0,1. The ndarray tx_data is Tx +/-1
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symbols as real numbers I. The ndarray rx_data is Rx +/-1 symbols as real numbers I. Note: Ncorr needs to be
even

sk_dsp_comm.digitalcom.BPSK_tx(N_bits, Ns, ach_fc=2.0, ach_lvl_dB=-100, pulse=’rect’, al-
pha=0.25, M=6)

Generates biphase shift keyed (BPSK) transmitter with adjacent channel interference.

Generates three BPSK signals with rectangular or square root raised cosine (SRC) pulse shaping of duration
N_bits and Ns samples per bit. The desired signal is centered on f = 0, which the adjacent channel signals to the
left and right are also generated at dB level relative to the desired signal. Used in the digital communications
Case Study supplement.

Parameters

N_bits [the number of bits to simulate]

Ns [the number of samples per bit]

ach_fc [the frequency offset of the adjacent channel signals (default 2.0)]

ach_lvl_dB [the level of the adjacent channel signals in dB (default -100)]

pulse [the pulse shape ‘rect’ or ‘src’]

alpha [square root raised cosine pulse shape factor (default = 0.25)]

M [square root raised cosine pulse truncation factor (default = 6)]

Returns

x [ndarray of the composite signal x0 + ach_lvl*(x1p + x1m)]

b [the transmit pulse shape]

data0 [the data bits used to form the desired signal; used for error checking]

Examples

>>> x,b,data0 = BPSK_tx(1000,10,'src')

sk_dsp_comm.digitalcom.GMSK_bb(N_bits, Ns, MSK=0, BT=0.35)
MSK/GMSK Complex Baseband Modulation x,data = gmsk(N_bits, Ns, BT = 0.35, MSK = 0)

Parameters

N_bits [number of symbols processed]

Ns [the number of samples per bit]

MSK [0 for no shaping which is standard MSK, MSK <> 0 –> GMSK is generated.]

BT [premodulation Bb*T product which sets the bandwidth of the Gaussian lowpass filter]

Mark Wickert Python version November 2014

sk_dsp_comm.digitalcom.MPSK_bb(N_symb, Ns, M, pulse=’rect’, alpha=0.25, MM=6)
Generate a complex baseband MPSK signal with pulse shaping.

Parameters

N_symb [number of MPSK symbols to produce]

Ns [the number of samples per bit,]

M [MPSK modulation order, e.g., 4, 8, 16, . . . ]
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pulse_type [‘rect’ , ‘rc’, ‘src’ (default ‘rect’)]

alpha [excess bandwidth factor(default 0.25)]

MM [single sided pulse duration (default = 6)]

Returns

x [ndarray of the MPSK signal values]

b [ndarray of the pulse shape]

data [ndarray of the underlying data bits]

Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine), ‘src’ (root raised cosine). The actual pulse length
is 2*M+1 samples. This function is used by BPSK_tx in the Case Study article.

Examples

>>> from sk_dsp_comm import digitalcom as dc
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt
>>> x,b,data = dc.MPSK_bb(500,10,8,'src',0.35)
>>> # Matched filter received signal x
>>> y = signal.lfilter(b,1,x)
>>> plt.plot(y.real[12*10:],y.imag[12*10:])
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> # Sample once per symbol
>>> plt.plot(y.real[12*10::10],y.imag[12*10::10],'r.')
>>> plt.show()

sk_dsp_comm.digitalcom.OFDM_rx(x, Nf, N, Np=0, cp=False, Ncp=0, alpha=0.95, ht=None)

Parameters

x [Received complex baseband OFDM signal]

Nf [Number of filled carriers, must be even and Nf < N]

N [Total number of carriers; generally a power 2, e.g., 64, 1024, etc]

Np [Period of pilot code blocks; 0 <=> no pilots; -1 <=> use the ht impulse response input to
equalize the OFDM symbols; note equalization still requires Ncp > 0 to work on a delay
spread channel.]

cp [False/True <=> if False assume no CP is present]

Ncp [The length of the cyclic prefix]

alpha [The filter forgetting factor in the channel estimator. Typically alpha is 0.9 to 0.99.]

nt [Input the known theoretical channel impulse response]

Returns

z_out [Recovered complex baseband QAM symbols as a serial stream; as appropriate channel
estimation has been applied.]
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H [channel estimate (in the frequency domain at each subcarrier)]

See also:

OFDM_tx

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> from scipy import signal
>>> from numpy import array
>>> hc = array([1.0, 0.1, -0.05, 0.15, 0.2, 0.05]) # impulse response spanning
→˓five symbols
>>> # Quick example using the above channel with no cyclic prefix
>>> x1,b1,IQ_data1 = dc.QAM_bb(50000,1,'16qam')
>>> x_out = dc.OFDM_tx(IQ_data1,32,64,0,True,0)
>>> c_out = signal.lfilter(hc,1,x_out) # Apply channel distortion
>>> r_out = dc.cpx_AWGN(c_out,100,64/32) # Es/N0 = 100 dB
>>> z_out,H = dc.OFDM_rx(r_out,32,64,-1,True,0,alpha=0.95,ht=hc)
>>> plt.plot(z_out[200:].real,z_out[200:].imag,'.')
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()
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Another example with noise using a 10 symbol cyclic prefix and channel estimation:

>>> x_out = dc.OFDM_tx(IQ_data1,32,64,100,True,10)
>>> c_out = signal.lfilter(hc,1,x_out) # Apply channel distortion
>>> r_out = dc.cpx_AWGN(c_out,25,64/32) # Es/N0 = 25 dB
>>> z_out,H = dc.OFDM_rx(r_out,32,64,100,True,10,alpha=0.95,ht=hc);
>>> plt.figure() # if channel estimation is turned on need this
>>> plt.plot(z_out[-2000:].real,z_out[-2000:].imag,'.') # allow settling time
>>> plt.xlabel('In-Phase')

(continues on next page)
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(continued from previous page)

>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()
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sk_dsp_comm.digitalcom.OFDM_tx(IQ_data, Nf, N, Np=0, cp=False, Ncp=0)

Parameters

IQ_data [+/-1, +/-3, etc complex QAM symbol sample inputs]

Nf [number of filled carriers, must be even and Nf < N]

N [total number of carriers; generally a power 2, e.g., 64, 1024, etc]

Np [Period of pilot code blocks; 0 <=> no pilots]
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cp [False/True <=> bypass cp insertion entirely if False]

Ncp [the length of the cyclic prefix]

Returns

x_out [complex baseband OFDM waveform output after P/S and CP insertion]

See also:

OFDM_rx

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> x1,b1,IQ_data1 = dc.QAM_bb(50000,1,'16qam')
>>> x_out = dc.OFDM_tx(IQ_data1,32,64)
>>> plt.psd(x_out,2**10,1);
>>> plt.xlabel(r'Normalized Frequency ($\omega/(2\pi)=f/f_s$)')
>>> plt.ylim([-40,0])
>>> plt.xlim([-.5,.5])
>>> plt.show()

sk_dsp_comm.digitalcom.PCM_decode(x_bits, N_bits)

x_bits = serial bit stream of 0/1 values. The length of x_bits must be a multiple of N_bits

N_bits = bit precision of PCM samples xhat = decoded PCM signal samples

Mark Wickert, March 2015

sk_dsp_comm.digitalcom.PCM_encode(x, N_bits)

x = signal samples to be PCM encoded

N_bits = bit precision of PCM samples x_bits = encoded serial bit stream of 0/1 values. MSB first.
///////////////////////////////////////////////////////////// Mark Wickert, Mark 2015

sk_dsp_comm.digitalcom.QAM_SEP(tx_data, rx_data, mod_type, Ncorr = 1024, Ntransient = 0)
Count symbol errors between a transmitted and received QAM signal. The received symbols are assumed to
be soft values on a unit square. Time delay between streams is detected. The ndarray tx_data is Tx complex
symbols. The ndarray rx_data is Rx complex symbols. Note: Ncorr needs to be even

sk_dsp_comm.digitalcom.QAM_bb(N_symb, Ns, mod_type=’16qam’, pulse=’rect’, alpha=0.35)
QAM_BB_TX: A complex baseband transmitter x,b,tx_data = QAM_bb(K,Ns,M)

//////////// Inputs //////////////////////////////////////////////////

N_symb = the number of symbols to process Ns = number of samples per symbol

mod_type = modulation type: qpsk, 16qam, 64qam, or 256qam

alpha = squareroot raised codine pulse shape bandwidth factor.

For DOCSIS alpha = 0.12 to 0.18. In general alpha can range over 0 < alpha < 1.

SRC = pulse shape: 0-> rect, 1-> SRC

//////////// Outputs /////////////////////////////////////////////////

x = complex baseband digital modulation b = transmitter shaping filter, rectangle or SRC

tx_data = xI+1j*xQ = inphase symbol sequence + 1j*quadrature symbol sequence
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Mark Wickert November 2014

sk_dsp_comm.digitalcom.QPSK_BEP(tx_data, rx_data, Ncorr=1024, Ntransient=0)
Count bit errors between a transmitted and received QPSK signal. Time delay between streams is detected as
well as ambiquity resolution due to carrier phase lock offsets of 𝑘 * 𝜋

4 , k=0,1,2,3. The ndarray sdata is Tx +/-1
symbols as complex numbers I + j*Q. The ndarray data is Rx +/-1 symbols as complex numbers I + j*Q. Note:
Ncorr needs to be even

sk_dsp_comm.digitalcom.QPSK_bb(N_symb, Ns, lfsr_len=5, pulse=’src’, alpha=0.25, M=6)

sk_dsp_comm.digitalcom.QPSK_rx(fc, N_symb, Rs, EsN0=100, fs=125, lfsr_len=10, phase=0,
pulse=’src’)

This function generates

sk_dsp_comm.digitalcom.QPSK_tx(fc, N_symb, Rs, fs=125, lfsr_len=10, pulse=’src’)

sk_dsp_comm.digitalcom.Q_fctn(x)
Gaussian Q-function

sk_dsp_comm.digitalcom.RZ_bits(N_bits, Ns, pulse=’rect’, alpha=0.25, M=6)
Generate return-to-zero (RZ) data bits with pulse shaping.

A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping.

Parameters

N_bits [number of RZ {0,1} data bits to produce]

Ns [the number of samples per bit,]

pulse_type [‘rect’ , ‘rc’, ‘src’ (default ‘rect’)]

alpha [excess bandwidth factor(default 0.25)]

M [single sided pulse duration (default = 6)]

Returns

x [ndarray of the RZ signal values]

b [ndarray of the pulse shape]

data [ndarray of the underlying data bits]

Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine), ‘src’ (root raised cosine). The actual pulse length
is 2*M+1 samples. This function is used by BPSK_tx in the Case Study article.

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.digitalcom import RZ_bits
>>> x,b,data = RZ_bits(100,10)
>>> t = arange(len(x))
>>> plt.plot(t,x)
>>> plt.ylim([-0.01, 1.01])
>>> plt.show()
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sk_dsp_comm.digitalcom.bit_errors(tx_data, rx_data, Ncorr=1024, Ntransient=0)
Count bit errors between a transmitted and received BPSK signal. Time delay between streams is detected as
well as ambiquity resolution due to carrier phase lock offsets of 𝑘 * 𝜋, k=0,1. The ndarray tx_data is Tx 0/1 bits
as real numbers I. The ndarray rx_data is Rx 0/1 bits as real numbers I. Note: Ncorr needs to be even

sk_dsp_comm.digitalcom.chan_est_equalize(z, Np, alpha, Ht=None)
This is a helper function for OFDM_rx() to unpack pilot blocks from from the entire set of received OFDM
symbols (the Nf of N filled carriers only); then estimate the channel array H recursively, and finally apply H_hat
to Y, i.e., X_hat = Y/H_hat carrier-by-carrier. Note if Np = -1, then H_hat = H, the true channel.

Parameters

z [Input N_OFDM x Nf 2D array containing pilot blocks and OFDM data symbols.]

Np [The pilot block period; if -1 use the known channel impulse response input to ht.]

alpha [The forgetting factor used to recursively estimate H_hat]

Ht [The theoretical channel frquency response to allow ideal equalization provided Ncp is ade-
quate.]

Returns

zz_out [The input z with the pilot blocks removed and one-tap equalization applied to each of
the Nf carriers.]

H [The channel estimate in the frequency domain; an array of length Nf; will return Ht if
provided as an input.]

Examples

>>> from sk_dsp_comm.digitalcom import chan_est_equalize
>>> zz_out,H = chan_est_eq(z,Nf,Np,alpha,Ht=None)

sk_dsp_comm.digitalcom.eye_plot(x, L, S=0)
Eye pattern plot of a baseband digital communications waveform.

The signal must be real, but can be multivalued in terms of the underlying modulation scheme. Used for BPSK
eye plots in the Case Study article.

Parameters

x [ndarray of the real input data vector/array]

L [display length in samples (usually two symbols)]

S [start index]

Returns

None [A plot window opens containing the eye plot]

Notes

Increase S to eliminate filter transients.
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Examples

1000 bits at 10 samples per bit with ‘rc’ shaping.

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> x,b, data = dc.NRZ_bits(1000,10,'rc')
>>> dc.eye_plot(x,20,60)
>>> plt.show()

sk_dsp_comm.digitalcom.farrow_resample(x, fs_old, fs_new)

Parameters

x [Input list representing a signal vector needing resampling.]

fs_old [Starting/old sampling frequency.]

fs_new [New sampling frequency.]

Returns

y [List representing the signal vector resampled at the new frequency.]

Notes

A cubic interpolator using a Farrow structure is used resample the input data at a new sampling rate that may be
an irrational multiple of the input sampling rate.

Time alignment can be found for a integer value M, found with the following:

𝑓𝑠,𝑜𝑢𝑡 = 𝑓𝑠,𝑖𝑛(𝑀 − 1)/𝑀

The filter coefficients used here and a more comprehensive listing can be found in H. Meyr, M. Moeneclaey, &
S. Fechtel, “Digital Communication Receivers,” Wiley, 1998, Chapter 9, pp. 521-523.

Another good paper on variable interpolators is: L. Erup, F. Gardner, & R. Harris, “Interpolation in Digital
Modems–Part II: Implementation and Performance,” IEEE Comm. Trans., June 1993, pp. 998-1008.

A founding paper on the subject of interpolators is: C. W. Farrow, “A Continuously variable Digital Delay
Element,” Proceedings of the IEEE Intern. Symp. on Circuits Syst., pp. 2641-2645, June 1988.

Mark Wickert April 2003, recoded to Python November 2013

Examples

The following example uses a QPSK signal with rc pulse shaping, and time alignment at M = 15.

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm import digitalcom as dc
>>> Ns = 8
>>> Rs = 1.
>>> fsin = Ns*Rs
>>> Tsin = 1 / fsin
>>> N = 200
>>> ts = 1
>>> x, b, data = dc.MPSK_bb(N+12, Ns, 4, 'rc')

(continues on next page)
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(continued from previous page)

>>> x = x[12*Ns:]
>>> xxI = x.real
>>> M = 15
>>> fsout = fsin * (M-1) / M
>>> Tsout = 1. / fsout
>>> xI = dc.farrow_resample(xxI, fsin, fsin)
>>> tx = arange(0, len(xI)) / fsin
>>> yI = dc.farrow_resample(xxI, fsin, fsout)
>>> ty = arange(0, len(yI)) / fsout
>>> plt.plot(tx - Tsin, xI)
>>> plt.plot(tx[ts::Ns] - Tsin, xI[ts::Ns], 'r.')
>>> plt.plot(ty[ts::Ns] - Tsout, yI[ts::Ns], 'g.')
>>> plt.title(r'Impact of Asynchronous Sampling')
>>> plt.ylabel(r'Real Signal Amplitude')
>>> plt.xlabel(r'Symbol Rate Normalized Time')
>>> plt.xlim([0, 20])
>>> plt.grid()
>>> plt.show()

sk_dsp_comm.digitalcom.mux_pilot_blocks(IQ_data, Np)

Parameters

IQ_data [a 2D array of input QAM symbols with the columns] representing the NF carrier
frequencies and each row the QAM symbols used to form an OFDM symbol

Np [the period of the pilot blocks; e.g., a pilot block is] inserted every Np OFDM symbols
(Np-1 OFDM data symbols of width Nf are inserted in between the pilot blocks.

Returns

IQ_datap [IQ_data with pilot blocks inserted]

See also:

OFDM_tx

Notes

A helper function called by OFDM_tx() that inserts pilot block for use in channel estimation when a delay
spread channel is present.

sk_dsp_comm.digitalcom.my_psd(x, NFFT=1024, Fs=1)
A local version of NumPy’s PSD function that returns the plot arrays.

A mlab.psd wrapper function that returns two ndarrays; makes no attempt to auto plot anything.

Parameters

x [ndarray input signal]

NFFT [a power of two, e.g., 2**10 = 1024]

Fs [the sampling rate in Hz]

Returns

Px [ndarray of the power spectrum estimate]

f [ndarray of frequency values]
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Notes

This function makes it easier to overlay spectrum plots because you have better control over the axis scaling
than when using psd() in the autoscale mode.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> from numpy import log10
>>> x,b, data = dc.NRZ_bits(10000,10)
>>> Px,f = dc.my_psd(x,2**10,10)
>>> plt.plot(f, 10*log10(Px))
>>> plt.show()

sk_dsp_comm.digitalcom.rc_imp(Ns, alpha, M=6)
A truncated raised cosine pulse used in digital communications.

The pulse shaping factor 0 < 𝛼 < 1 is required as well as the truncation factor M which sets the pulse duration
to be 2 *𝑀 * 𝑇𝑠𝑦𝑚𝑏𝑜𝑙.

Parameters

Ns [number of samples per symbol]

alpha [excess bandwidth factor on (0, 1), e.g., 0.35]

M [equals RC one-sided symbol truncation factor]

Returns

b [ndarray containing the pulse shape]

See also:

sqrt_rc_imp

Notes

The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communi-
cations waveform.

Examples

Ten samples per symbol and 𝛼 = 0.35.

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.digitalcom import rc_imp
>>> from numpy import arange
>>> b = rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()

sk_dsp_comm.digitalcom.scatter(x, Ns, start)
Sample a baseband digital communications waveform at the symbol spacing.
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Parameters

x [ndarray of the input digital comm signal]

Ns [number of samples per symbol (bit)]

start [the array index to start the sampling]

Returns

xI [ndarray of the real part of x following sampling]

xQ [ndarray of the imaginary part of x following sampling]

Notes

Normally the signal is complex, so the scatter plot contains clusters at point in the complex plane. For a binary
signal such as BPSK, the point centers are nominally +/-1 on the real axis. Start is used to eliminate transients
from the FIR pulse shaping filters from appearing in the scatter plot.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> x,b, data = dc.NRZ_bits(1000,10,'rc')

Add some noise so points are now scattered about +/-1.

>>> y = dc.cpx_AWGN(x,20,10)
>>> yI,yQ = dc.scatter(y,10,60)
>>> plt.plot(yI,yQ,'.')
>>> plt.grid()
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.show()

sk_dsp_comm.digitalcom.sqrt_rc_imp(Ns, alpha, M=6)
A truncated square root raised cosine pulse used in digital communications.

The pulse shaping factor 0 < 𝛼 < 1 is required as well as the truncation factor M which sets the pulse duration
to be 2 *𝑀 * 𝑇𝑠𝑦𝑚𝑏𝑜𝑙.

Parameters

Ns [number of samples per symbol]

alpha [excess bandwidth factor on (0, 1), e.g., 0.35]

M [equals RC one-sided symbol truncation factor]

Returns

b [ndarray containing the pulse shape]
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Notes

The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communi-
cations waveform. When square root raised cosine (SRC) pulse is used to generate Tx signals and at the receiver
used as a matched filter (receiver FIR filter), the received signal is now raised cosine shaped, thus having zero
intersymbol interference and the optimum removal of additive white noise if present at the receiver input.

Examples

Ten samples per symbol and 𝛼 = 0.35.

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.digitalcom import sqrt_rc_imp
>>> b = sqrt_rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()

sk_dsp_comm.digitalcom.strips(x, Nx, fig_size=(6, 4))
Plots the contents of real ndarray x as a vertical stacking of strips, each of length Nx. The default figure size is
(6,4) inches. The yaxis tick labels are the starting index of each strip. The red dashed lines correspond to zero
amplitude in each strip.

strips(x,Nx,my_figsize=(6,4))

Mark Wickert April 2014

sk_dsp_comm.digitalcom.time_delay(x, D, N=4)
A time varying time delay which takes advantage of the Farrow structure for cubic interpolation:

y = time_delay(x,D,N = 3)

Note that D is an array of the same length as the input signal x. This allows you to make the delay a function of
time. If you want a constant delay just use D*zeros(len(x)). The minimum delay allowable is one sample or D
= 1.0. This is due to the causal system nature of the Farrow structure.

A founding paper on the subject of interpolators is: C. W. Farrow, “A Continuously variable Digital Delay
Element,” Proceedings of the IEEE Intern. Symp. on Circuits Syst., pp. 2641-2645, June 1988.

Mark Wickert, February 2014

sk_dsp_comm.digitalcom.tobin(data, width)

sk_dsp_comm.digitalcom.xcorr(x1, x2, Nlags)
r12, k = xcorr(x1,x2,Nlags), r12 and k are ndarray’s Compute the energy normalized cross correlation between
the sequences x1 and x2. If x1 = x2 the cross correlation is the autocorrelation. The number of lags sets how
many lags to return centered about zero

2.6.4 fec_conv

A Convolutional Encoding and Decoding

Copyright (c) March 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
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1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

sk_dsp_comm.fec_conv.binary(num, length=8)
Format an integer to binary without the leading ‘0b’

sk_dsp_comm.fec_conv.conv_Pb_bound(R, dfree, Ck, SNRdB, hard_soft, M=2)
Coded bit error probabilty

Convolution coding bit error probability upper bound according to Ziemer & Peterson 7-16, p. 507

Mark Wickert November 2014

Parameters

R: Code rate

dfree: Free distance of the code

Ck: Weight coefficient

SNRdB: Signal to noise ratio in dB

hard_soft: 0 hard, 1 soft, 2 uncoded

M: M-ary

Notes

The code rate R is given by 𝑅𝑠 = 𝑘
𝑛 .

Examples

>>> import numpy as np
>>> from sk_dsp_comm import fec_conv as fec
>>> import matplotlib.pyplot as plt
>>> SNRdB = np.arange(2,12,.1)
>>> Pb = fec.conv_Pb_bound(1./2,10,[36, 0, 211, 0, 1404, 0, 11633],SNRdB,2)
>>> Pb_1_2 = fec.conv_Pb_bound(1./2,10,[36, 0, 211, 0, 1404, 0, 11633],SNRdB,1)
>>> Pb_3_4 = fec.conv_Pb_bound(3./4,4,[164, 0, 5200, 0, 151211, 0, 3988108],SNRdB,
→˓1)

(continues on next page)
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(continued from previous page)

>>> plt.semilogy(SNRdB,Pb)
>>> plt.semilogy(SNRdB,Pb_1_2)
>>> plt.semilogy(SNRdB,Pb_3_4)
>>> plt.axis([2,12,1e-7,1e0])
>>> plt.xlabel(r'$E_b/N_0$ (dB)')
>>> plt.ylabel(r'Symbol Error Probability')
>>> plt.legend(('Uncoded BPSK','R=1/2, K=7, Soft','R=3/4 (punc), K=7, Soft'),loc=
→˓'best')
>>> plt.grid();
>>> plt.show()

class sk_dsp_comm.fec_conv.fec_conv(G=(’111’, ’101’), Depth=10)
Class responsible for creating rate 1/2 convolutional code objects, and then encoding and decoding the user
code set in polynomials of G. Key methods provided include conv_encoder(), viterbi_decoder(),
puncture(), depuncture(), trellis_plot(), and traceback_plot().

Parameters

G: A tuple of two binary strings corresponding to the encoder polynomials

Depth: The decision depth employed by the Viterbi decoder method

Examples

>>> from sk_dsp_comm import fec_conv
>>> cc1 = fec_conv.fec_conv(('101', '111'), Depth=10) # decision depth is 10

Methods

bm_calc(ref_code_bits, rec_code_bits, . . . ) distance = bm_calc(ref_code_bits, rec_code_bits,
metric_type) Branch metrics calculation

conv_encoder(input, state) output, state = conv_encoder(input,state) We assume
a rate 1/2 encoder.

depuncture(soft_bits[, puncture_pattern, . . . ]) Apply de-puncturing to the soft bits coming from the
channel.

puncture(code_bits[, puncture_pattern]) Apply puncturing to the serial bits produced by con-
volutionally encoding.

traceback_plot([fsize]) Plots a path of the possible last 4 states.
trellis_plot([fsize]) Plots a trellis diagram of the possible state transi-

tions.
viterbi_decoder(x[, metric_type]) A method which performs Viterbi decoding of noisy

bit stream, taking as input soft bit values centered on
+/-1 and returning hard decision 0/1 bits.

bm_calc(ref_code_bits, rec_code_bits, metric_type)
distance = bm_calc(ref_code_bits, rec_code_bits, metric_type) Branch metrics calculation

Mark Wickert February 2014

conv_encoder(input, state)
output, state = conv_encoder(input,state) We assume a rate 1/2 encoder. Polys G1 and G2 are entered as
binary strings, e.g, G1 = ‘111’ and G2 = ‘101’ for K = 3 G1 = ‘1011011’ and G2 = ‘1111001’ for K = 7
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Input state as a binary string of length K-1, e.g., ‘00’ or ‘0000000’ e.g., state = ‘00’ for K = 3 e.g., state =
‘000000’ for K = 7 Mark Wickert February 2014

depuncture(soft_bits, puncture_pattern=(’110’, ’101’), erase_value=3.5)
Apply de-puncturing to the soft bits coming from the channel. Erasure bits are inserted to return the soft
bit values back to a form that can be Viterbi decoded.

Parameters

• soft_bits –

• puncture_pattern –

• erase_value –

Returns

Examples

This example uses the following puncture matrix:

A =

[︂
1 1 0
1 0 1

]︂
The upper row operates on the outputs for the 𝐺1 polynomial and the lower row operates on the outputs of
the 𝐺2 polynomial.

>>> import numpy as np
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> cc = fec_conv(('101','111'))
>>> x = np.array([0, 0, 1, 1, 1, 0, 0, 0, 0, 0])
>>> state = '00'
>>> y, state = cc.conv_encoder(x, state)
>>> yp = cc.puncture(y, ('110','101'))
>>> cc.depuncture(yp, ('110', '101'), 1)
array([ 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1., 0., 1., 1., 0., 1., 1., 0.
→˓]

puncture(code_bits, puncture_pattern=(’110’, ’101’))
Apply puncturing to the serial bits produced by convolutionally encoding.

Parameters

• code_bits –

• puncture_pattern –

Returns

Examples

This example uses the following puncture matrix:

A =

[︂
1 1 0
1 0 1

]︂
The upper row operates on the outputs for the 𝐺1 polynomial and the lower row operates on the outputs of
the 𝐺2 polynomial.
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>>> import numpy as np
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> cc = fec_conv(('101','111'))
>>> x = np.array([0, 0, 1, 1, 1, 0, 0, 0, 0, 0])
>>> state = '00'
>>> y, state = cc.conv_encoder(x, state)
>>> cc.puncture(y, ('110','101'))
array([ 0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 0.])

traceback_plot(fsize=(6, 4))
Plots a path of the possible last 4 states.

Parameters

fsize [Plot size for matplotlib.]

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> from sk_dsp_comm import digitalcom as dc
>>> import numpy as np
>>> cc = fec_conv()
>>> x = np.random.randint(0,2,100)
>>> state = '00'
>>> y,state = cc.conv_encoder(x,state)
>>> # Add channel noise to bits translated to +1/-1
>>> yn = dc.cpx_AWGN(2*y-1,5,1) # SNR = 5 dB
>>> # Translate noisy +1/-1 bits to soft values on [0,7]
>>> yn = (yn.real+1)/2*7
>>> z = cc.viterbi_decoder(yn)
>>> cc.traceback_plot()
>>> plt.show()

trellis_plot(fsize=(6, 4))
Plots a trellis diagram of the possible state transitions.

Parameters

fsize [Plot size for matplotlib.]

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> cc = fec_conv()
>>> cc.trellis_plot()
>>> plt.show()

viterbi_decoder(x, metric_type=’three_bit’)
A method which performs Viterbi decoding of noisy bit stream, taking as input soft bit values centered on
+/-1 and returning hard decision 0/1 bits.

Parameters

x: Received noisy bit values centered on +/-1 at one sample per bit
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metric_type: Hard or soft decision decoding type. At present only 3-bit soft-decision is implemented.

Returns

y: Decoded 0/1 bit stream

Examples

Take from fall 2016 final project

sk_dsp_comm.fec_conv.hard_Pk(k, R, SNR)
Calculates Pk as found in Ziemer & Peterson eq. 7-12, p.505

Mark Wickert November 2014

sk_dsp_comm.fec_conv.soft_Pk(k, R, SNR)
Calculates Pk as found in Ziemer & Peterson eq. 7-13, p.505

Mark Wickert November 2014

class sk_dsp_comm.fec_conv.trellis_branches(Ns)
A structure to hold the trellis states, bits, and input values for both ‘1’ and ‘0’ transitions. Ns is the number of
states = 2(𝐾−1).

class sk_dsp_comm.fec_conv.trellis_nodes(Ns)
A structure to hold the trellis from nodes and to nodes. Ns is the number of states = 2(𝐾−1).

class sk_dsp_comm.fec_conv.trellis_paths(Ns, D)
A structure to hold the trellis paths in terms of traceback_states, cumulative_metrics, and traceback_bits. A full
decision depth history of all this infomation is not essential, but does allow the graphical depiction created by
the method traceback_plot(). Ns is the number of states = 2(𝐾−1) and D is the decision depth. As a rule, D
should be about 5 times K.

2.6.5 fir_design_helper

Basic Linear Phase Digital Filter Design Helper

Copyright (c) March 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.
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The views and conclusions contained in the software and documentation are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

sk_dsp_comm.fir_design_helper.bandpass_order(f_stop1, f_pass1, f_pass2, f_stop2,
dpass_dB, dstop_dB, fsamp=1)

Optimal FIR (equal ripple) Bandpass Order Determination

Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002.
Journal paper reference: F. Mintzer & B. Liu, Practical Design Rules for Optimum FIR Bandpass Digital Filters,
IEEE Transactions on Acoustics and Speech, pp. 204-206, April,1979.

sk_dsp_comm.fir_design_helper.bandstop_order(f_stop1, f_pass1, f_pass2, f_stop2,
dpass_dB, dstop_dB, fsamp=1)

Optimal FIR (equal ripple) Bandstop Order Determination

Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002.
Journal paper reference: F. Mintzer & B. Liu, Practical Design Rules for Optimum FIR Bandpass Digital Filters,
IEEE Transactions on Acoustics and Speech, pp. 204-206, April,1979.

sk_dsp_comm.fir_design_helper.fir_remez_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_pass,
d_stop, fs=1.0, N_bump=5)

Design an FIR bandpass filter using remez with order determination. The filter order is determined based on
f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired passband ripple d_pass dB and stopband
attenuation d_stop dB all relative to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

sk_dsp_comm.fir_design_helper.fir_remez_bsf(f_pass1, f_stop1, f_stop2, f_pass2, d_pass,
d_stop, fs=1.0, N_bump=5)

Design an FIR bandstop filter using remez with order determination. The filter order is determined based on
f_pass1 Hz, f_stop1 Hz, f_stop2 Hz, f_pass2 Hz, and the desired passband ripple d_pass dB and stopband
attenuation d_stop dB all relative to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

sk_dsp_comm.fir_design_helper.fir_remez_hpf(f_stop, f_pass, d_pass, d_stop, fs=1.0,
N_bump=5)

Design an FIR highpass filter using remez with order determination. The filter order is determined based on
f_pass Hz, fstop Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative
to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

sk_dsp_comm.fir_design_helper.fir_remez_lpf(f_pass, f_stop, d_pass, d_stop, fs=1.0,
N_bump=5)

Design an FIR lowpass filter using remez with order determination. The filter order is determined based on
f_pass Hz, fstop Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative
to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

sk_dsp_comm.fir_design_helper.firwin_bpf(N_taps, f1, f2, fs=1.0, pass_zero=False)
Design a windowed FIR bandpass filter in terms of passband critical frequencies f1 < f2 in Hz relative to
sampling rate fs in Hz. The number of taps must be provided.

Mark Wickert October 2016

sk_dsp_comm.fir_design_helper.firwin_kaiser_bpf(f_stop1, f_pass1, f_pass2, f_stop2,
d_stop, fs=1.0, N_bump=0)

Design an FIR bandpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based
on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired stopband attenuation d_stop in dB for both
stopbands, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the
stopband attenuation.
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Mark Wickert October 2016

sk_dsp_comm.fir_design_helper.firwin_kaiser_bsf(f_stop1, f_pass1, f_pass2, f_stop2,
d_stop, fs=1.0, N_bump=0)

Design an FIR bandstop filter using the sinc() kernel and a Kaiser window. The filter order is determined based
on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired stopband attenuation d_stop in dB for both
stopbands, all relative to a sampling rate of fs Hz. Note: The passband ripple cannot be set independent of the
stopband attenuation. Note: The filter order is forced to be even (odd number of taps) so there is a center tap
that can be used to form 1 - H_BPF.

Mark Wickert October 2016

sk_dsp_comm.fir_design_helper.firwin_kaiser_hpf(f_stop, f_pass, d_stop, fs=1.0,
N_bump=0)

Design an FIR highpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based
on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs
Hz. Note: the passband ripple cannot be set independent of the stopband attenuation.

Mark Wickert October 2016

sk_dsp_comm.fir_design_helper.firwin_kaiser_lpf(f_pass, f_stop, d_stop, fs=1.0,
N_bump=0)

Design an FIR lowpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based
on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs
Hz. Note: the passband ripple cannot be set independent of the stopband attenuation.

Mark Wickert October 2016

sk_dsp_comm.fir_design_helper.firwin_lpf(N_taps, fc, fs=1.0)
Design a windowed FIR lowpass filter in terms of passband critical frequencies f1 < f2 in Hz relative to sampling
rate fs in Hz. The number of taps must be provided.

Mark Wickert October 2016

sk_dsp_comm.fir_design_helper.freqz_resp_list(b, a=array([1]), mode=’dB’, fs=1.0,
Npts=1024, fsize=(6, 4))

A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced
using matplotlib

freq_resp(self,mode = ‘dB’,Npts = 1024)

A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced
using matplotlib

freqz_resp(b,a=[1],mode = ‘dB’,Npts = 1024,fsize=(6,4))

b = ndarray of numerator coefficients a = ndarray of denominator coefficents

mode = display mode: ‘dB’ magnitude, ‘phase’ in radians, or ‘groupdelay_s’ in samples and
‘groupdelay_t’ in sec, all versus frequency in Hz

Npts = number of points to plot; default is 1024

fsize = figure size; defult is (6,4) inches

Mark Wickert, January 2015

sk_dsp_comm.fir_design_helper.lowpass_order(f_pass, f_stop, dpass_dB, dstop_dB,
fsamp=1)

Optimal FIR (equal ripple) Lowpass Order Determination
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Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002.
Journal paper reference: Herriman et al., Practical Design Rules for Optimum Finite Imulse Response Digitl
Filters, Bell Syst. Tech. J., vol 52, pp. 769-799, July-Aug., 1973.IEEE, 1973.

2.6.6 iir_design_helper

Basic IIR Bilinear Transform-Based Digital Filter Design Helper

Copyright (c) March 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

sk_dsp_comm.iir_design_helper.IIR_bpf(f_stop1, f_pass1, f_pass2, f_stop2, Ripple_pass, At-
ten_stop, fs=1.0, ftype=’butter’)

Design an IIR bandpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz,
f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz.

Parameters

f_stop1 [ndarray of the numerator coefficients]

f_pass [ndarray of the denominator coefficients]

Ripple_pass :

Atten_stop :

fs [sampling rate in Hz]

ftype [Analog prototype from ‘butter’ ‘cheby1’, ‘cheby2’,] ‘ellip’, and ‘bessel’

Returns

b [ndarray of the numerator coefficients]

a [ndarray of the denominator coefficients]

sos [2D ndarray of second-order section coefficients]
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Examples

>>> fs = 48000
>>> f_pass = 8000
>>> f_stop = 5000
>>> b_but,a_but,sos_but = IIR_hpf(f_stop,f_pass,0.5,60,fs,'butter')
>>> b_cheb1,a_cheb1,sos_cheb1 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby1')
>>> b_cheb2,a_cheb2,sos_cheb2 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby2')
>>> b_elli,a_elli,sos_elli = IIR_hpf(f_stop,f_pass,0.5,60,fs,'ellip')

Mark Wickert October 2016

sk_dsp_comm.iir_design_helper.IIR_bsf(f_pass1, f_stop1, f_stop2, f_pass2, Ripple_pass, At-
ten_stop, fs=1.0, ftype=’butter’)

Design an IIR bandstop filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz,
f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz.

Mark Wickert October 2016

sk_dsp_comm.iir_design_helper.IIR_hpf(f_stop, f_pass, Ripple_pass, Atten_stop, fs=1.0,
ftype=’butter’)

Design an IIR highpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz,
f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz.

Parameters

f_stop :

f_pass :

Ripple_pass :

Atten_stop :

fs [sampling rate in Hz]

ftype [Analog prototype from ‘butter’ ‘cheby1’, ‘cheby2’,] ‘ellip’, and ‘bessel’

Returns

b [ndarray of the numerator coefficients]

a [ndarray of the denominator coefficients]

sos [2D ndarray of second-order section coefficients]

Examples

>>> fs = 48000
>>> f_pass = 8000
>>> f_stop = 5000
>>> b_but,a_but,sos_but = IIR_hpf(f_stop,f_pass,0.5,60,fs,'butter')
>>> b_cheb1,a_cheb1,sos_cheb1 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby1')
>>> b_cheb2,a_cheb2,sos_cheb2 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby2')
>>> b_elli,a_elli,sos_elli = IIR_hpf(f_stop,f_pass,0.5,60,fs,'ellip')

Mark Wickert October 2016
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sk_dsp_comm.iir_design_helper.IIR_lpf(f_pass, f_stop, Ripple_pass, Atten_stop, fs=1.0,
ftype=’butter’)

Design an IIR lowpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz,
f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz.

Parameters

f_pass [Passband critical frequency in Hz]

f_stop [Stopband critical frequency in Hz]

Ripple_pass [Filter gain in dB at f_pass]

Atten_stop [Filter attenuation in dB at f_stop]

fs [Sampling rate in Hz]

ftype [Analog prototype from ‘butter’ ‘cheby1’, ‘cheby2’,] ‘ellip’, and ‘bessel’

Returns

b [ndarray of the numerator coefficients]

a [ndarray of the denominator coefficients]

sos [2D ndarray of second-order section coefficients]

Notes

Additionally a text string telling the user the filter order is written to the console, e.g., IIR cheby1 order = 8.

Examples

>>> fs = 48000
>>> f_pass = 5000
>>> f_stop = 8000
>>> b_but,a_but,sos_but = IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter')
>>> b_cheb1,a_cheb1,sos_cheb1 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1')
>>> b_cheb2,a_cheb2,sos_cheb2 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2')
>>> b_elli,a_elli,sos_elli = IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip')

Mark Wickert October 2016

sk_dsp_comm.iir_design_helper.freqz_cas(sos, w)
Cascade frequency response

Mark Wickert October 2016

sk_dsp_comm.iir_design_helper.freqz_resp_cas_list(sos, mode=’dB’, fs=1.0,
Npts=1024, fsize=(6, 4))

A method for displaying cascade digital filter form frequency response magnitude, phase, and group delay. A
plot is produced using matplotlib

freq_resp(self,mode = ‘dB’,Npts = 1024)

A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced
using matplotlib

freqz_resp(b,a=[1],mode = ‘dB’,Npts = 1024,fsize=(6,4))

b = ndarray of numerator coefficients a = ndarray of denominator coefficents
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mode = display mode: ‘dB’ magnitude, ‘phase’ in radians, or ‘groupdelay_s’ in samples and
‘groupdelay_t’ in sec, all versus frequency in Hz

Npts = number of points to plot; default is 1024

fsize = figure size; defult is (6,4) inches

Mark Wickert, January 2015

sk_dsp_comm.iir_design_helper.freqz_resp_list(b, a=array([1]), mode=’dB’, fs=1.0,
Npts=1024, fsize=(6, 4))

A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced
using matplotlib

freq_resp(self,mode = ‘dB’,Npts = 1024)

A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced
using matplotlib

freqz_resp(b,a=[1],mode = ‘dB’,Npts = 1024,fsize=(6,4))

b = ndarray of numerator coefficients a = ndarray of denominator coefficents

mode = display mode: ‘dB’ magnitude, ‘phase’ in radians, or ‘groupdelay_s’ in samples and
‘groupdelay_t’ in sec, all versus frequency in Hz

Npts = number of points to plot; default is 1024

fsize = figure size; defult is (6,4) inches

Mark Wickert, January 2015

sk_dsp_comm.iir_design_helper.sos_cascade(sos1, sos2)
Mark Wickert October 2016

sk_dsp_comm.iir_design_helper.sos_zplane(sos, auto_scale=True, size=2, tol=0.001)
Create an z-plane pole-zero plot.

Create an z-plane pole-zero plot using the numerator and denominator z-domain system function coefficient
ndarrays b and a respectively. Assume descending powers of z.

Parameters

sos [ndarray of the sos coefficients]

auto_scale [bool (default True)]

size [plot radius maximum when scale = False]

Returns

(M,N) [tuple of zero and pole counts + plot window]

Notes

This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the
right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via
the function signal.unique_roots.
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Examples

>>> # Here the plot is generated using auto_scale
>>> sos_zplane(sos)
>>> # Here the plot is generated using manual scaling
>>> sos_zplane(sos,False,1.5)

sk_dsp_comm.iir_design_helper.unique_cpx_roots(rlist, tol=0.001)
The average of the root values is used when multiplicity is greater than one.

Mark Wickert October 2016

2.6.7 multirate_helper

sk_dsp_comm.multirate_helper.freqz_resp(b, a=[1], mode=’dB’, fs=1.0, Npts=1024, fsize=(6,
4))

A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced
using matplotlib

freq_resp(self,mode = ‘dB’,Npts = 1024)

A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced
using matplotlib

freqz_resp(b,a=[1],mode = ‘dB’,Npts = 1024,fsize=(6,4))

b = ndarray of numerator coefficients a = ndarray of denominator coefficents

mode = display mode: ‘dB’ magnitude, ‘phase’ in radians, or ‘groupdelay_s’ in samples and
‘groupdelay_t’ in sec, all versus frequency in Hz

Npts = number of points to plot; defult is 1024

fsize = figure size; defult is (6,4) inches

Mark Wickert, January 2015

class sk_dsp_comm.multirate_helper.multirate_FIR(b)
A simple class for encapsulating FIR filtering, or FIR upsample/ filter, or FIR filter/downsample operations used
in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is
instantiated. Frequency response and the pole zero plot can also be plotted using supplied class methods.

Mark Wickert March 2017

Methods

dn(x[, M_change]) Downsample and filter the signal
filter(x) Filter the signal
up(x[, L_change]) Upsample and filter the signal
zplane([auto_scale, size, detect_mult, tol]) Plot the poles and zeros of the FIR filter in the z-

plane

freq_resp
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dn(x, M_change=12)
Downsample and filter the signal

filter(x)
Filter the signal

freq_resp(mode=’dB’, fs=8000, ylim=[-100, 2])

up(x, L_change=12)
Upsample and filter the signal

zplane(auto_scale=True, size=2, detect_mult=True, tol=0.001)
Plot the poles and zeros of the FIR filter in the z-plane

class sk_dsp_comm.multirate_helper.multirate_IIR(sos)
A simple class for encapsulating IIR filtering, or IIR upsample/ filter, or IIR filter/downsample operations used
in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is
instantiated. Frequency response and the pole zero plot can also be plotted using supplied class methods. For
added robustness to floating point quantization all filtering is done using the scipy.signal cascade of second-order
sections filter method y = sosfilter(sos,x).

Mark Wickert March 2017

Methods

dn(x[, M_change]) Downsample and filter the signal
filter(x) Filter the signal using second-order sections
freq_resp([mode, fs, ylim]) Frequency response plot
up(x[, L_change]) Upsample and filter the signal
zplane([auto_scale, size, detect_mult, tol]) Plot the poles and zeros of the FIR filter in the z-

plane

dn(x, M_change=12)
Downsample and filter the signal

filter(x)
Filter the signal using second-order sections

freq_resp(mode=’dB’, fs=8000, ylim=[-100, 2])
Frequency response plot

up(x, L_change=12)
Upsample and filter the signal

zplane(auto_scale=True, size=2, detect_mult=True, tol=0.001)
Plot the poles and zeros of the FIR filter in the z-plane

class sk_dsp_comm.multirate_helper.rate_change(M_change=12, fcutoff=0.9,
N_filt_order=8, ftype=’butter’)

A simple class for encapsulating the upsample/filter and filter/downsample operations used in modeling a comm
system. Objects of this class will hold the required filter coefficients once an object is instantiated.

Mark Wickert February 2015

Methods
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dn(x) Downsample and filter the signal
up(x) Upsample and filter the signal

dn(x)
Downsample and filter the signal

up(x)
Upsample and filter the signal

2.6.8 optfir

2.6.9 pyaudio_helper

Support functions and classes for using PyAudio for real-time DSP

Copyright (c) September 2017, Mark Wickert, Andrew Smit All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

class sk_dsp_comm.pyaudio_helper.DSP_io_stream(stream_callback, in_idx=1, out_idx=4,
frame_length=1024, fs=44100, Tcap-
ture=0, sleep_time=0.1)

Real-time DSP one channel input/output audio streaming

Use PyAudio to explore real-time audio DSP using Python

Mark Wickert, Andrew Smit September 2017

Methods

DSP_callback_tic() Add new tic time to the DSP_tic list.
DSP_callback_toc() Add new toc time to the DSP_toc list.

Continued on next page
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Table 5 – continued from previous page
DSP_capture_add_samples(new_data) Append new samples to the data_capture array and

increment the sample counter If length reaches Tcap-
ture, then the newest samples will be kept.

DSP_capture_add_samples_stereo(. . . ) Append new samples to the data_capture_left array
and the data_capture_right array and increment the
sample counter.

cb_active_plot(start_ms, stop_ms[,
line_color])

Plot timing information of time spent in the callback.

get_LR(in_data) Splits incoming packed stereo data into separate left
and right channels and returns an array of left sam-
ples and an array of right samples

in_out_check() Checks the input and output to see if they are valid
interactive_stream([Tsec, numChan]) Stream audio with start and stop radio buttons
pack_LR(left_out, right_out) Packs separate left and right channel data into one

array to output and returns the output.
stop() Call to stop streaming
stream([Tsec, numChan]) Stream audio using callback
stream_stats() Display basic statistics of callback execution: ideal

period between callbacks, average measured period
between callbacks, and average time spent in the
callback.

thread_stream([Tsec, numChan]) Stream audio in a thread using callback.

interaction

DSP_callback_tic()
Add new tic time to the DSP_tic list. Will not be called if Tcapture = 0.

DSP_callback_toc()
Add new toc time to the DSP_toc list. Will not be called if Tcapture = 0.

DSP_capture_add_samples(new_data)
Append new samples to the data_capture array and increment the sample counter If length reaches Tcap-
ture, then the newest samples will be kept. If Tcapture = 0 then new values are not appended to the
data_capture array.

DSP_capture_add_samples_stereo(new_data_left, new_data_right)
Append new samples to the data_capture_left array and the data_capture_right array and increment the
sample counter. If length reaches Tcapture, then the newest samples will be kept. If Tcapture = 0 then new
values are not appended to the data_capture array.

cb_active_plot(start_ms, stop_ms, line_color=’b’)
Plot timing information of time spent in the callback. This is similar to what a logic analyzer provides
when probing an interrupt.

cb_active_plot( start_ms,stop_ms,line_color=’b’)

get_LR(in_data)
Splits incoming packed stereo data into separate left and right channels and returns an array of left samples
and an array of right samples

Parameters

in_data [input data from the streaming object in the callback function.]

Returns
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left_in [array of incoming left channel samples]

right_in [array of incoming right channel samples]

in_out_check()
Checks the input and output to see if they are valid

interactive_stream(Tsec=2, numChan=1)
Stream audio with start and stop radio buttons

Interactive stream is designed for streaming audio through this object using a callback function. This
stream is threaded, so it can be used with ipywidgets. Click on the “Start Streaming” button to start
streaming and click on “Stop Streaming” button to stop streaming.

Parameters

Tsec [stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite]

mode. When in infinite mode, the “Stop Streaming” radio button or Tsec.stop() can be

used to stop the stream.

numChan [number of channels. Use 1 for mono and 2 for stereo.]

pack_LR(left_out, right_out)
Packs separate left and right channel data into one array to output and returns the output.

Parameters

left_out [left channel array of samples going to output]

right_out [right channel array of samples going to output]

Returns

out [packed left and right channel array of samples]

stop()
Call to stop streaming

stream(Tsec=2, numChan=1)
Stream audio using callback

Parameters

Tsec [stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite]

mode. When in infinite mode, Tsec.stop() can be used to stop the stream.

numChan [number of channels. Use 1 for mono and 2 for stereo.]

stream_stats()
Display basic statistics of callback execution: ideal period between callbacks, average measured period
between callbacks, and average time spent in the callback.

thread_stream(Tsec=2, numChan=1)
Stream audio in a thread using callback. The stream is threaded, so widgets can be used simultaneously
during stream.

Parameters

Tsec [stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite]

mode. When in infinite mode, Tsec.stop() can be used to stop the stream.

numChan [number of channels. Use 1 for mono and 2 for stereo.]
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sk_dsp_comm.pyaudio_helper.available_devices()
Display available input and output audio devices along with their port indices.

Returns Dictionary whose keys are the device index, the number of inputs and outputs, and their
names.

Return type dict

class sk_dsp_comm.pyaudio_helper.loop_audio(x, start_offset=0)
Loop signal ndarray during playback. Optionally start_offset samples into the array. Array may be 1D (one
channel) or 2D (two channel, Nsamps by 2)

Mark Wickert July 2017

Methods

get_samples

get_samples(frame_count)

2.6.10 rtlsdr_helper

Support functions for the RTL-SDR using pyrtlsdr

Copyright (c) July 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

sk_dsp_comm.rtlsdr_helper.complex2wav(filename, rate, x)
Save a complex signal vector to a wav file for compact binary storage of 16-bit signal samples. The wav left and
right channels are used to save real (I) and imaginary (Q) values. The rate is just a convent way of documenting
the original signal sample rate.

complex2wav(filename,rate,x)

Mark Wickert April 2014

2.6. Examples 91

https://docs.python.org/3/library/stdtypes.html#dict


scikit-dsp-comm Documentation, Release 0.0.5

sk_dsp_comm.rtlsdr_helper.discrim(x)
function disdata = discrim(x) where x is an angle modulated signal in complex baseband form.

Mark Wickert

sk_dsp_comm.rtlsdr_helper.fsk_BEP(rx_data, m, flip)
Estimate the BEP of the data bits recovered by the RTL-SDR Based FSK Receiver.

The reference m-sequence generated in Python was found to produce sequences running in the opposite direction
relative to the m-sequences generated by the mbed. To allow error detection the reference m-sequence is flipped.

Mark Wickert April 2014

sk_dsp_comm.rtlsdr_helper.mono_FM(x, fs=2400000.0, file_name=’test.wav’)
Decimate complex baseband input by 10 Design 1st decimation lowpass filter (f_c = 200 KHz)

sk_dsp_comm.rtlsdr_helper.pilot_PLL(xr, fq, fs, loop_type, Bn, zeta)
Mark Wickert, April 2014

sk_dsp_comm.rtlsdr_helper.sccs_bit_sync(y, Ns)

Symbol synchronization algorithm using SCCS

y = baseband NRZ data waveform

Ns = nominal number of samples per symbol

Reworked from ECE 5675 Project Translated from m-code version Mark Wickert April 2014

sk_dsp_comm.rtlsdr_helper.stereo_FM(x, fs=2400000.0, file_name=’test.wav’)
Stereo demod from complex baseband at sampling rate fs. Assume fs is 2400 ksps

Mark Wickert July 2017

sk_dsp_comm.rtlsdr_helper.wav2complex(filename)
Return a complex signal vector from a wav file that was used to store the real (I) and imaginary (Q) values of a
complex signal ndarray. The rate is included as means of recalling the original signal sample rate.

fs,x = wav2complex(filename)

Mark Wickert April 2014

2.6.11 sigsys

Signals and Systems Function Module

Copyright (c) March 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
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TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

sk_dsp_comm.sigsys.BPSK_tx(N_bits, Ns, ach_fc=2.0, ach_lvl_dB=-100, pulse=’rect’, alpha=0.25,
M=6)

Generates biphase shift keyed (BPSK) transmitter with adjacent channel interference.

Generates three BPSK signals with rectangular or square root raised cosine (SRC) pulse shaping of duration
N_bits and Ns samples per bit. The desired signal is centered on f = 0, which the adjacent channel signals to the
left and right are also generated at dB level relative to the desired signal. Used in the digital communications
Case Study supplement.

Parameters

N_bits [the number of bits to simulate]

Ns [the number of samples per bit]

ach_fc [the frequency offset of the adjacent channel signals (default 2.0)]

ach_lvl_dB [the level of the adjacent channel signals in dB (default -100)]

pulse :the pulse shape ‘rect’ or ‘src’

alpha [square root raised cosine pulse shape factor (default = 0.25)]

M [square root raised cosine pulse truncation factor (default = 6)]

Returns

x [ndarray of the composite signal x0 + ach_lvl*(x1p + x1m)]

b [the transmit pulse shape]

data0 [the data bits used to form the desired signal; used for error checking]

Examples

>>> x,b,data0 = BPSK_tx(1000,10,pulse='src')

sk_dsp_comm.sigsys.CIC(M, K)
A functional form implementation of a cascade of integrator comb (CIC) filters.

Parameters

M [Effective number of taps per section (typically the decimation factor).]

K [The number of CIC sections cascaded (larger K gives the filter a wider image rejection
bandwidth).]

Returns

b [FIR filter coefficients for a simple direct form implementation using the filter() function.]
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Notes

Commonly used in multirate signal processing digital down-converters and digital up-converters. A true CIC
filter requires no multiplies, only add and subtract operations. The functional form created here is a simple FIR
requiring real coefficient multiplies via filter().

Mark Wickert July 2013

sk_dsp_comm.sigsys.NRZ_bits(N_bits, Ns, pulse=’rect’, alpha=0.25, M=6)
Generate non-return-to-zero (NRZ) data bits with pulse shaping.

A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping.

Parameters

N_bits [number of NRZ +/-1 data bits to produce]

Ns [the number of samples per bit,]

pulse_type [‘rect’ , ‘rc’, ‘src’ (default ‘rect’)]

alpha [excess bandwidth factor(default 0.25)]

M [single sided pulse duration (default = 6)]

Returns

x [ndarray of the NRZ signal values]

b [ndarray of the pulse shape]

data [ndarray of the underlying data bits]

Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine), ‘src’ (root raised cosine). The actual pulse length
is 2*M+1 samples. This function is used by BPSK_tx in the Case Study article.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.sigsys import NRZ_bits
>>> from numpy import arange
>>> x,b,data = NRZ_bits(100, 10)
>>> t = arange(len(x))
>>> plt.plot(t, x)
>>> plt.ylim([-1.01, 1.01])
>>> plt.show()

sk_dsp_comm.sigsys.NRZ_bits2(data, Ns, pulse=’rect’, alpha=0.25, M=6)
Generate non-return-to-zero (NRZ) data bits with pulse shaping with user data

A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping. The data se-
quence is user supplied.

Parameters

data [ndarray of the data bits as 0/1 values]

Ns [the number of samples per bit,]
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pulse_type [‘rect’ , ‘rc’, ‘src’ (default ‘rect’)]

alpha [excess bandwidth factor(default 0.25)]

M [single sided pulse duration (default = 6)]

Returns

x [ndarray of the NRZ signal values]

b [ndarray of the pulse shape]

Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine), ‘src’ (root raised cosine). The actual pulse length
is 2*M+1 samples.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.sigsys import NRZ_bits2
>>> from sk_dsp_comm.sigsys import m_seq
>>> from numpy import arange
>>> x,b = NRZ_bits2(m_seq(5),10)
>>> t = arange(len(x))
>>> plt.ylim([-1.01, 1.01])
>>> plt.plot(t,x)

sk_dsp_comm.sigsys.OA_filter(x, h, N, mode=0)
Overlap and add transform domain FIR filtering.

This function implements the classical overlap and add method of transform domain filtering using a length P
FIR filter.

Parameters

x [input signal to be filtered as an ndarray]

h [FIR filter coefficients as an ndarray of length P]

N [FFT size > P, typically a power of two]

mode [0 or 1, when 1 returns a diagnostic matrix]

Returns

y [the filtered output as an ndarray]

y_mat [an ndarray whose rows are the individual overlap outputs.]

Notes

y_mat is used for diagnostics and to gain understanding of the algorithm.
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Examples

>>> import numpy as np
>>> from sk_dsp_comm.sigsys import OA_filter
>>> n = np.arange(0,100)
>>> x = np.cos(2*pi*0.05*n)
>>> b = np.ones(10)
>>> y = OA_filter(x,h,N)
>>> # set mode = 1
>>> y, y_mat = OA_filter(x,h,N,1)

sk_dsp_comm.sigsys.OS_filter(x, h, N, mode=0)
Overlap and save transform domain FIR filtering.

This function implements the classical overlap and save method of transform domain filtering using a length P
FIR filter.

Parameters

x [input signal to be filtered as an ndarray]

h [FIR filter coefficients as an ndarray of length P]

N [FFT size > P, typically a power of two]

mode [0 or 1, when 1 returns a diagnostic matrix]

Returns

y [the filtered output as an ndarray]

y_mat [an ndarray whose rows are the individual overlap outputs.]

Notes

y_mat is used for diagnostics and to gain understanding of the algorithm.

Examples

>>> n = arange(0,100)
>>> x = cos(2*pi*0.05*n)
>>> b = ones(10)
>>> y = OS_filter(x,h,N)
>>> # set mode = 1
>>> y, y_mat = OS_filter(x,h,N,1)

sk_dsp_comm.sigsys.PN_gen(N_bits, m=5)
Maximal length sequence signal generator.

Generates a sequence 0/1 bits of N_bit duration. The bits themselves are obtained from an m-sequence of length
m. Available m-sequence (PN generators) include m = 2,3,. . . ,12, & 16.

Parameters

N_bits [the number of bits to generate]

m [the number of shift registers. 2,3, .., 12, & 16]

Returns
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PN [ndarray of the generator output over N_bits]

Notes

The sequence is periodic having period 2**m - 1 (2^m - 1).

Examples

>>> # A 15 bit period signal nover 50 bits
>>> PN = PN_gen(50,4)

sk_dsp_comm.sigsys.am_rx(x192)
AM envelope detector receiver for the Chapter 17 Case Study

The receiver bandpass filter is not included in this function.

Parameters

x192 [ndarray of the AM signal at sampling rate 192 ksps]

Returns

m_rx8 [ndarray of the demodulated message at 8 ksps]

t8 [ndarray of the time axis at 8 ksps]

m_rx192 [ndarray of the demodulated output at 192 ksps]

x_edet192 [ndarray of the envelope detector output at 192 ksps]

Notes

The bandpass filter needed at the receiver front-end can be designed using b_bpf,a_bpf = am_rx_BPF().

Examples

>>> import numpy as np
>>> n = np.arange(0,1000)
>>> # 1 kHz message signal
>>> m = np.cos(2*np.pi*1000/8000.*n)
>>> m_rx8,t8,m_rx192,x_edet192 = am_rx(x192)

sk_dsp_comm.sigsys.am_rx_BPF(N_order=7, ripple_dB=1, B=10000.0, fs=192000.0)
Bandpass filter design for the AM receiver Case Study of Chapter 17.

Design a 7th-order Chebyshev type 1 bandpass filter to remove/reduce adjacent channel intereference at the
envelope detector input.

Parameters

N_order [the filter order (default = 7)]

ripple_dB [the passband ripple in dB (default = 1)]

B [the RF bandwidth (default = 10e3)]

fs [the sampling frequency]
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Returns

b_bpf [ndarray of the numerator filter coefficients]

a_bpf [ndarray of the denominator filter coefficients]

Examples

>>> from scipy import signal
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import sk_dsp_comm.sigsys as ss
>>> # Use the default values
>>> b_bpf,a_bpf = ss.am_rx_BPF()

Pole-zero plot of the filter.

>>> ss.zplane(b_bpf,a_bpf)
>>> plt.show()
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Plot of the frequency response.
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>>> f = np.arange(0,192/2.,.1)
>>> w, Hbpf = signal.freqz(b_bpf,a_bpf,2*np.pi*f/192)
>>> plt.plot(f*10,20*np.log10(abs(Hbpf)))
>>> plt.axis([0,1920/2.,-80,10])
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (kHz)")
>>> plt.show()
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sk_dsp_comm.sigsys.am_tx(m, a_mod, fc=75000.0)
AM transmitter for Case Study of Chapter 17.

Assume input is sampled at 8 Ksps and upsampling by 24 is performed to arrive at fs_out = 192 Ksps.

Parameters

m [ndarray of the input message signal]

a_mod [AM modulation index, between 0 and 1]

fc [the carrier frequency in Hz]

Returns

x192 [ndarray of the upsampled by 24 and modulated carrier]

t192 [ndarray of the upsampled by 24 time axis]

m24 [ndarray of the upsampled by 24 message signal]

Notes

The sampling rate of the input signal is assumed to be 8 kHz.

Examples
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>>> n = arange(0,1000)
>>> # 1 kHz message signal
>>> m = cos(2*pi*1000/8000.*n)
>>> x192, t192 = am_tx(m,0.8,fc=75e3)

sk_dsp_comm.sigsys.biquad2(w_num, r_num, w_den, r_den)
A biquadratic filter in terms of conjugate pole and zero pairs.

Parameters

w_num [zero frequency (angle) in rad/sample]

r_num [conjugate zeros radius]

w_den [pole frequency (angle) in rad/sample]

r_den [conjugate poles radius; less than 1 for stability]

Returns

b [ndarray of numerator coefficients]

a [ndarray of denominator coefficients]

Examples

>>> b,a = biquad2(pi/4., 1, pi/4., 0.95)

sk_dsp_comm.sigsys.bit_errors(z, data, start, Ns)
A simple bit error counting function.

In its present form this function counts bit errors between hard decision BPSK bits in +/-1 form and compares
them with 0/1 binary data that was transmitted. Timing between the Tx and Rx data is the responsibility of the
user. An enhanced version of this function, which features automatic synching will be created in the future.

Parameters

z [ndarray of hard decision BPSK data prior to symbol spaced sampling]

data [ndarray of reference bits in 1/0 format]

start [timing reference for the received]

Ns [the number of samples per symbol]

Returns

Pe_hat [the estimated probability of a bit error]

Notes

The Tx and Rx data streams are exclusive-or’d and the then the bit errors are summed, and finally divided by
the number of bits observed to form an estimate of the bit error probability. This function needs to be enhanced
to be more useful.
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Examples

>>> from scipy import signal
>>> x,b, data = NRZ_bits(1000,10)
>>> # set Eb/N0 to 8 dB
>>> y = cpx_AWGN(x,8,10)
>>> # matched filter the signal
>>> z = signal.lfilter(b,1,y)
>>> # make bit decisions at 10 and Ns multiples thereafter
>>> Pe_hat = bit_errors(z,data,10,10)

sk_dsp_comm.sigsys.cascade_filters(b1, a1, b2, a2)
Cascade two IIR digital filters into a single (b,a) coefficient set.

To cascade two digital filters (system functions) given their numerator and denominator coefficients you simply
convolve the coefficient arrays.

Parameters

b1 [ndarray of numerator coefficients for filter 1]

a1 [ndarray of denominator coefficients for filter 1]

b2 [ndarray of numerator coefficients for filter 2]

a2 [ndarray of denominator coefficients for filter 2]

Returns

b [ndarray of numerator coefficients for the cascade]

a [ndarray of denominator coefficients for the cascade]

Examples

>>> from scipy import signal
>>> b1,a1 = signal.butter(3, 0.1)
>>> b2,a2 = signal.butter(3, 0.15)
>>> b,a = cascade_filters(b1,a1,b2,a2)

sk_dsp_comm.sigsys.conv_integral(x1, tx1, x2, tx2, extent=(’f’, ’f’))
Continuous-time convolution of x1 and x2 with proper tracking of the output time axis.

Appromimate the convolution integral for the convolution of two continuous-time signals using the SciPy func-
tion signal. The time (sequence axis) are managed from input to output. y(t) = x1(t)*x2(t).

Parameters

x1 [ndarray of signal x1 corresponding to tx1]

tx1 [ndarray time axis for x1]

x2 [ndarray of signal x2 corresponding to tx2]

tx2 [ndarray time axis for x2]

extent [(‘e1’,’e2’) where ‘e1’, ‘e2’ may be ‘f’ finite, ‘r’ right-sided, or ‘l’ left-sided]

Returns

y [ndarray of output values y]
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ty [ndarray of the corresponding time axis for y]

Notes

The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending
values in x1 and x2. The time steps used in x1(t) and x2(t) must match. The default extents of (‘f’,’f’) are
used for signals that are active (have support) on or within t1 and t2 respectively. A right-sided signal such as
exp(-a*t)*u(t) is semi-infinite, so it has extent ‘r’ and the convolution output will be truncated to display only
the valid results.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss
>>> tx = np.arange(-5,10,.01)
>>> x = ss.rect(tx-2,4) # pulse starts at t = 0
>>> y,ty = ss.conv_integral(x,tx,x,tx)
>>> plt.plot(ty,y) # expect a triangle on [0,8]
>>> plt.show()
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Now, consider a pulse convolved with an exponential.

>>> h = 4*np.exp(-4*tx)*ss.step(tx)
>>> y,ty = ss.conv_integral(x,tx,h,tx,extent=('f','r')) # note extents set
>>> plt.plot(ty,y) # expect a pulse charge and discharge waveform

sk_dsp_comm.sigsys.conv_sum(x1, nx1, x2, nx2, extent=(’f’, ’f’))
Discrete convolution of x1 and x2 with proper tracking of the output time axis.

Convolve two discrete-time signals using the SciPy function scipy.signal.convolution(). The time
(sequence axis) are managed from input to output. y[n] = x1[n]*x2[n].

Parameters
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x1 [ndarray of signal x1 corresponding to nx1]

nx1 [ndarray time axis for x1]

x2 [ndarray of signal x2 corresponding to nx2]

nx2 [ndarray time axis for x2]

extent [(‘e1’,’e2’) where ‘e1’, ‘e2’ may be ‘f’ finite, ‘r’ right-sided, or ‘l’ left-sided]

Returns

y [ndarray of output values y]

ny [ndarray of the corresponding sequence index n]

Notes

The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending
values in x1 and x2. The default extents of (‘f’,’f’) are used for signals that are active (have support) on or
within n1 and n2 respectively. A right-sided signal such as a^n*u[n] is semi-infinite, so it has extent ‘r’ and the
convolution output will be truncated to display only the valid results.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss
>>> nx = np.arange(-5,10)
>>> x = ss.drect(nx,4)
>>> y,ny = ss.conv_sum(x,nx,x,nx)
>>> plt.stem(ny,y)
>>> plt.show()

Consider a pulse convolved with an exponential. (‘r’ type extent)
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>>> h = 0.5**nx*ss.dstep(nx)
>>> y,ny = ss.conv_sum(x,nx,h,nx,('f','r')) # note extents set
>>> plt.stem(ny,y) # expect a pulse charge and discharge sequence
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sk_dsp_comm.sigsys.cpx_AWGN(x, EsN0, Ns)
Apply white Gaussian noise to a digital communications signal.

This function represents a complex baseband white Gaussian noise digital communications channel. The input
signal array may be real or complex.

Parameters

x [ndarray noise free complex baseband input signal.]

EsNO [set the channel Es/N0 (Eb/N0 for binary) level in dB]

Ns [number of samples per symbol (bit)]
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Returns

y [ndarray x with additive noise added.]

Notes

Set the channel energy per symbol-to-noise power spectral density ratio (Es/N0) in dB.

Examples

>>> x,b, data = NRZ_bits(1000,10)
>>> # set Eb/N0 = 10 dB
>>> y = cpx_AWGN(x,10,10)

sk_dsp_comm.sigsys.cruise_control(wn, zeta, T, vcruise, vmax, tf_mode=’H’)
Cruise control with PI controller and hill disturbance.

This function returns various system function configurations for a the cruise control Case Study example found
in the supplementary article. The plant model is obtained by the linearizing the equations of motion and the
controller contains a proportional and integral gain term set via the closed-loop parameters natuarl frequency
wn (rad/s) and damping zeta.

Parameters

wn [closed-loop natural frequency in rad/s, nominally 0.1]

zeta [closed-loop damping factor, nominally 1.0]

T [vehicle time constant, nominally 10 s]

vcruise [cruise velocity set point, nominally 75 mph]

vmax [maximum vehicle velocity, nominally 120 mph]

tf_mode [‘H’, ‘HE’, ‘HVW’, or ‘HED’ controls the system function returned by the function]

‘H’ [closed-loop system function V(s)/R(s)]

‘HE’ [closed-loop system function E(s)/R(s)]

‘HVW’ [closed-loop system function V(s)/W(s)]

‘HED’ [closed-loop system function E(s)/D(s), where D is the hill disturbance input]

Returns

b [numerator coefficient ndarray]

a [denominator coefficient ndarray]

Examples

>>> # return the closed-loop system function output/input velocity
>>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='H')
>>> # return the closed-loop system function loop error/hill disturbance
>>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='HED')
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sk_dsp_comm.sigsys.deci24(x)
Decimate by L = 24 using Butterworth filters.

The decimation is done using two three stages. Downsample sample by L = 2 and lowpass filter, downsample by
3 and lowpass filter, then downsample by L = 4 and lowpass filter. In all cases the lowpass filter is a 10th-order
Butterworth lowpass.

Parameters

x [ndarray of the input signal]

Returns

y [ndarray of the output signal]

Notes

The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to track the upsampling by 2, 3, and 4 respectively.

Examples

>>> y = deci24(x)

sk_dsp_comm.sigsys.delta_eps(t, eps)
Rectangular pulse approximation to impulse function.

Parameters

t [ndarray of time axis]

eps [pulse width]

Returns

d [ndarray containing the impulse approximation]

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import delta_eps
>>> t = np.arange(-2,2,.001)
>>> d = delta_eps(t,.1)
>>> plt.plot(t,d)
>>> plt.show()

sk_dsp_comm.sigsys.dimpulse(n)
Discrete impulse function delta[n].

Parameters

n [ndarray of the time axis]

Returns

x [ndarray of the signal delta[n]]
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Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import dimpulse
>>> n = arange(-5,5)
>>> x = dimpulse(n)
>>> plt.stem(n,x)
>>> plt.show()
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Shift the delta left by 2.

>>> x = dimpulse(n+2)
>>> plt.stem(n,x)
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sk_dsp_comm.sigsys.downsample(x, M, p=0)
Downsample by factor M

Keep every Mth sample of the input. The phase of the input samples kept can be selected.

Parameters

x [ndarray of input signal values]

M [downsample factor]

p [phase of decimated value, 0 (default), 1, . . . , M-1]

Returns

y [ndarray of the output signal values]

Examples

>>> y = downsample(x,3)
>>> y = downsample(x,3,1)

sk_dsp_comm.sigsys.drect(n, N)
Discrete rectangle function of duration N samples.

The signal is active on the interval 0 <= n <= N-1. Also known as the rectangular window function, which is
available in scipy.signal.

Parameters

n [ndarray of the time axis]

N [the pulse duration]

Returns

x [ndarray of the signal]

Notes

The discrete rectangle turns on at n = 0, off at n = N-1 and has duration of exactly N samples.

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import drect
>>> n = arange(-5,5)
>>> x = drect(n, N=3)
>>> plt.stem(n,x)
>>> plt.show()

Shift the delta left by 2.

>>> x = drect(n+2, N=3)
>>> plt.stem(n,x)
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sk_dsp_comm.sigsys.dstep(n)
Discrete step function u[n].

Parameters

n [ndarray of the time axis]

Returns

x [ndarray of the signal u[n]]

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import dstep
>>> n = arange(-5,5)
>>> x = dstep(n)
>>> plt.stem(n,x)
>>> plt.show()
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Shift the delta left by 2.

>>> x = dstep(n+2)
>>> plt.stem(n,x)

sk_dsp_comm.sigsys.env_det(x)
Ideal envelope detector.

This function retains the positive half cycles of the input signal.

Parameters

x [ndarray of the input sugnal]

Returns

y [ndarray of the output signal]
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Examples

>>> n = arange(0,100)
>>> # 1 kHz message signal
>>> m = cos(2*pi*1000/8000.*n)
>>> x192, t192, m24 = am_tx(m,0.8,fc=75e3)
>>> y = env_det(x192)

sk_dsp_comm.sigsys.ex6_2(n)
Generate a triangle pulse as described in Example 6-2 of Chapter 6.

You need to supply an index array n that covers at least [-2, 5]. The function returns the hard-coded signal of
the example.

Parameters

n [time index ndarray covering at least -2 to +5.]

Returns

x [ndarray of signal samples in x]

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> n = np.arange(-5,8)
>>> x = ss.ex6_2(n)
>>> plt.stem(n,x) # creates a stem plot of x vs n

sk_dsp_comm.sigsys.eye_plot(x, L, S=0)
Eye pattern plot of a baseband digital communications waveform.

The signal must be real, but can be multivalued in terms of the underlying modulation scheme. Used for BPSK
eye plots in the Case Study article.
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Parameters

x [ndarray of the real input data vector/array]

L [display length in samples (usually two symbols)]

S [start index]

Returns

Nothing [A plot window opens containing the eye plot]

Notes

Increase S to eliminate filter transients.

Examples

1000 bits at 10 samples per bit with ‘rc’ shaping.

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> x,b, data = ss.NRZ_bits(1000,10,'rc')
>>> ss.eye_plot(x,20,60)

sk_dsp_comm.sigsys.fir_iir_notch(fi, fs, r=0.95)
Design a second-order FIR or IIR notch filter.

A second-order FIR notch filter is created by placing conjugate zeros on the unit circle at angle corresponidng
to the notch center frequency. The IIR notch variation places a pair of conjugate poles at the same angle, but
with radius r < 1 (typically 0.9 to 0.95).

Parameters

fi [notch frequency is Hz relative to fs]

fs [the sampling frequency in Hz, e.g. 8000]

r [pole radius for IIR version, default = 0.95]

Returns

b [numerator coefficient ndarray]

a [denominator coefficient ndarray]

Notes

If the pole radius is 0 then an FIR version is created, that is there are no poles except at z = 0.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
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>>> b_FIR, a_FIR = ss.fir_iir_notch(1000,8000,0)
>>> ss.zplane(b_FIR, a_FIR)
>>> plt.show()
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>>> b_IIR, a_IIR = ss.fir_iir_notch(1000,8000)
>>> ss.zplane(b_IIR, a_IIR)

sk_dsp_comm.sigsys.from_wav(filename)
Read a wave file.

A wrapper function for scipy.io.wavfile.read that also includes int16 to float [-1,1] scaling.

Parameters

filename [file name string]

Returns

fs [sampling frequency in Hz]

x [ndarray of normalized to 1 signal samples]
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Examples

>>> fs,x = from_wav('test_file.wav')

sk_dsp_comm.sigsys.fs_approx(Xk, fk, t)
Synthesize periodic signal x(t) using Fourier series coefficients at harmonic frequencies

Assume the signal is real so coefficients Xk are supplied for nonnegative indicies. The negative index coefficients
are assumed to be complex conjugates.

Parameters

Xk [ndarray of complex Fourier series coefficients]

fk [ndarray of harmonic frequencies in Hz]

t [ndarray time axis corresponding to output signal array x_approx]

Returns

x_approx [ndarray of periodic waveform approximation over time span t]

Examples

>>> t = arange(0,2,.002)
>>> # a 20% duty cycle pulse train
>>> n = arange(0,20,1) # 0 to 19th harmonic
>>> fk = 1*n % period = 1s
>>> t, x_approx = fs_approx(Xk,fk,t)
>>> plot(t,x_approx)

sk_dsp_comm.sigsys.fs_coeff(xp, N, f0, one_side=True)
Numerically approximate the Fourier series coefficients given periodic x(t).

The input is assummed to represent one period of the waveform x(t) that has been uniformly sampled. The
number of samples supplied to represent one period of the waveform sets the sampling rate.

Parameters

xp [ndarray of one period of the waveform x(t)]

N [maximum Fourier series coefficient, [0,. . . ,N]]

f0 [fundamental frequency used to form fk.]

Returns

Xk [ndarray of the coefficients over indices [0,1,. . . ,N]]

fk [ndarray of the harmonic frequencies [0, f0,2f0,. . . ,Nf0]]

Notes

len(xp) >= 2*N+1 as len(xp) is the fft length.
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Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> import sk_dsp_comm.sigsys as ss
>>> t = arange(0,1,1/1024.)
>>> # a 20% duty cycle pulse starting at t = 0
>>> x_rect = ss.rect(t-.1,0.2)
>>> Xk, fk = ss.fs_coeff(x_rect,25,10)
>>> # plot the spectral lines
>>> ss.line_spectra(fk,Xk,'mag')
>>> plt.show()

sk_dsp_comm.sigsys.ft_approx(x, t, Nfft)
Approximate the Fourier transform of a finite duration signal using scipy.signal.freqz()

Parameters

x [input signal array]

t [time array used to create x(t)]

Nfft [the number of frdquency domain points used to] approximate X(f) on the interval
[fs/2,fs/2], where fs = 1/Dt. Dt being the time spacing in array t

Returns

f [frequency axis array in Hz]

X [the Fourier transform approximation (complex)]

Notes

The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending
values in x1 and x2. The default extents of (‘f’,’f’) are used for signals that are active (have support) on or
within n1 and n2 respectively. A right-sided signal such as 𝑎𝑛 * 𝑢[𝑛] is semi-infinite, so it has extent ‘r’ and the
convolution output will be truncated to display only the valid results.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss
>>> fs = 100 # sampling rate in Hz
>>> tau = 1
>>> t = np.arange(-5,5,1/fs)
>>> x0 = ss.rect(t-.5,tau)
>>> plt.figure(figsize=(6,5))
>>> plt.plot(t,x0)
>>> plt.grid()
>>> plt.ylim([-0.1,1.1])
>>> plt.xlim([-2,2])
>>> plt.title(r'Exact Waveform')
>>> plt.xlabel(r'Time (s)')
>>> plt.ylabel(r'$x_0(t)$')
>>> plt.show()
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>>> # FT Exact Plot
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss
>>> fs = 100 # sampling rate in Hz
>>> tau = 1
>>> t = np.arange(-5,5,1/fs)
>>> x0 = ss.rect(t-.5,tau)
>>> fe = np.arange(-10,10,.01)
>>> X0e = tau*np.sinc(fe*tau)
>>> plt.plot(fe,abs(X0e))
>>> #plot(f,angle(X0))
>>> plt.grid()
>>> plt.xlim([-10,10])
>>> plt.title(r'Exact (Theory) Spectrum Magnitude')
>>> plt.xlabel(r'Frequency (Hz)')
>>> plt.ylabel(r'$|X_0e(f)|$')
>>> plt.show()
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>>> # FT Approximation Plot
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss
>>> fs = 100 # sampling rate in Hz
>>> tau = 1
>>> t = np.arange(-5,5,1/fs)
>>> x0 = ss.rect(t-.5,tau)
>>> f,X0 = ss.ft_approx(x0,t,4096)
>>> plt.plot(f,abs(X0))
>>> #plt.plot(f,angle(X0))
>>> plt.grid()
>>> plt.xlim([-10,10])
>>> plt.title(r'Approximation Spectrum Magnitude')
>>> plt.xlabel(r'Frequency (Hz)')
>>> plt.ylabel(r'$|X_0(f)|$');
>>> plt.tight_layout()

(continues on next page)
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(continued from previous page)

>>> plt.show()
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sk_dsp_comm.sigsys.interp24(x)
Interpolate by L = 24 using Butterworth filters.

The interpolation is done using three stages. Upsample by L = 2 and lowpass filter, upsample by 3 and lowpass
filter, then upsample by L = 4 and lowpass filter. In all cases the lowpass filter is a 10th-order Butterworth
lowpass.

Parameters

x [ndarray of the input signal]

Returns

y [ndarray of the output signal]

Notes

The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to track the upsampling by 2, 3, and 4 respectively.

Examples

>>> y = interp24(x)

sk_dsp_comm.sigsys.line_spectra(fk, Xk, mode, sides=2, linetype=’b’, lwidth=2, floor_dB=-100,
fsize=(6, 4))

Plot the Fouier series line spectral given the coefficients.

This function plots two-sided and one-sided line spectra of a periodic signal given the complex exponential
Fourier series coefficients and the corresponding harmonic frequencies.

Parameters

fk [vector of real sinusoid frequencies]
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Xk [magnitude and phase at each positive frequency in fk]

mode [‘mag’ => magnitude plot, ‘magdB’ => magnitude in dB plot,]

mode cont [‘magdBn’ => magnitude in dB normalized, ‘phase’ => a phase plot in radians]

sides [2; 2-sided or 1-sided]

linetype [line type per Matplotlib definitions, e.g., ‘b’;]

lwidth [2; linewidth in points]

fsize [optional figure size in inches, default = (6,4) inches]

Returns

Nothing [A plot window opens containing the line spectrum plot]

Notes

Since real signals are assumed the frequencies of fk are 0 and/or positive numbers. The supplied Fourier coeffi-
cients correspond.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sk_dsp_comm.sigsys import line_spectra
>>> n = np.arange(0,25)
>>> # a pulse train with 10 Hz fundamental and 20% duty cycle
>>> fk = n*10
>>> Xk = np.sinc(n*10*.02)*np.exp(-1j*2*np.pi*n*10*.01) # 1j = sqrt(-1)

>>> line_spectra(fk,Xk,'mag')
>>> plt.show()

>>> line_spectra(fk,Xk,'phase')

sk_dsp_comm.sigsys.lms_ic(r, M, mu, delta=1)
Least mean square (LMS) interference canceller adaptive filter.

A complete LMS adaptive filter simulation function for the case of interference cancellation. Used in the digital
filtering case study.

Parameters

M [FIR Filter length (order M-1)]

delta [Delay used to generate the reference signal]

mu [LMS step-size]

delta [decorrelation delay between input and FIR filter input]

Returns

n [ndarray Index vector]

r [ndarray noisy (with interference) input signal]

r_hat [ndarray filtered output (NB_hat[n])]
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e [ndarray error sequence (WB_hat[n])]

ao [ndarray final value of weight vector]

F [ndarray frequency response axis vector]

Ao [ndarray frequency response of filter]

Examples

>>> # import a speech signal
>>> fs,s = from_wav('OSR_us_000_0030_8k.wav')
>>> # add interference at 1kHz and 1.5 kHz and
>>> # truncate to 5 seconds
>>> r = soi_snoi_gen(s,10,5*8000,[1000, 1500])
>>> # simulate with a 64 tap FIR and mu = 0.005
>>> n,r,r_hat,e,ao,F,Ao = lms_ic(r,64,0.005)

sk_dsp_comm.sigsys.lp_samp(fb, fs, fmax, N, shape=’tri’, fsize=(6, 4))
Lowpass sampling theorem plotting function.

Display the spectrum of a sampled signal after setting the bandwidth, sampling frequency, maximum display
frequency, and spectral shape.

Parameters

fb [spectrum lowpass bandwidth in Hz]

fs [sampling frequency in Hz]

fmax [plot over [-fmax,fmax]]

shape [‘tri’ or ‘line’]

N [number of translates, N positive and N negative]

fsize [the size of the figure window, default (6,4)]

Returns

Nothing [A plot window opens containing the spectrum plot]

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.sigsys import lp_samp

No aliasing as bandwidth 10 Hz < 25/2; fs > fb.

>>> lp_samp(10,25,50,10)
>>> plt.show()

Now aliasing as bandwidth 15 Hz > 25/2; fs < fb.

>>> lp_samp(15,25,50,10)

sk_dsp_comm.sigsys.lp_tri(f, fb)
Triangle spectral shape function used by lp_samp().

Parameters
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f [ndarray containing frequency samples]

fb [the bandwidth as a float constant]

Returns

x [ndarray of spectrum samples for a single triangle shape]

Notes

This is a support function for the lowpass spectrum plotting function lp_samp().

Examples

>>> x = lp_tri(f, fb)

sk_dsp_comm.sigsys.m_seq(m)
Generate an m-sequence ndarray using an all-ones initialization.

Available m-sequence (PN generators) include m = 2,3,. . . ,12, & 16.

Parameters

m [the number of shift registers. 2,3, .., 12, & 16]

Returns

c [ndarray of one period of the m-sequence]

Notes

The sequence period is 2**m - 1 (2^m - 1).

Examples

>>> c = m_seq(5)

sk_dsp_comm.sigsys.my_psd(x, NFFT=1024, Fs=1)
A local version of NumPy’s PSD function that returns the plot arrays.

A mlab.psd wrapper function that returns two ndarrays; makes no attempt to auto plot anything.

Parameters

x [ndarray input signal]

NFFT [a power of two, e.g., 2**10 = 1024]

Fs [the sampling rate in Hz]

Returns

Px [ndarray of the power spectrum estimate]

f [ndarray of frequency values]
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Notes

This function makes it easier to overlay spectrum plots because you have better control over the axis scaling
than when using psd() in the autoscale mode.

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import log10
>>> from sk_dsp_comm import sigsys as ss
>>> x,b, data = ss.NRZ_bits(10000,10)
>>> Px,f = ss.my_psd(x,2**10,10)
>>> plt.plot(f, 10*log10(Px))
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (Hz)")
>>> plt.show()

sk_dsp_comm.sigsys.peaking(GdB, fc, Q=3.5, fs=44100.0)
A second-order peaking filter having GdB gain at fc and approximately and 0 dB otherwise.

The filter coefficients returns correspond to a biquadratic system function containing five parameters.

Parameters

GdB [Lowpass gain in dB]

fc [Center frequency in Hz]

Q [Filter Q which is inversely proportional to bandwidth]

fs [Sampling frquency in Hz]

Returns

b [ndarray containing the numerator filter coefficients]

a [ndarray containing the denominator filter coefficients]

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sk_dsp_comm.sigsys import peaking
>>> from scipy import signal
>>> b,a = peaking(2.0,500)
>>> f = np.logspace(1,5,400)
>>> w,H = signal.freqz(b,a,2*np.pi*f/44100)
>>> plt.semilogx(f,20*np.log10(abs(H)))
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (Hz)")
>>> plt.show()

>>> b,a = peaking(-5.0,500,4)
>>> w,H = signal.freqz(b,a,2*np.pi*f/44100)
>>> plt.semilogx(f,20*np.log10(abs(H)))
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (Hz)")
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sk_dsp_comm.sigsys.position_CD(Ka, out_type=’fb_exact’)
CD sled position control case study of Chapter 18.

The function returns the closed-loop and open-loop system function for a CD/DVD sled position control system.
The loop amplifier gain is the only variable that may be changed. The returned system function can however be
changed.

Parameters

Ka [loop amplifier gain, start with 50.]

out_type [‘open_loop’ for open loop system function]

out_type [‘fb_approx’ for closed-loop approximation]

out_type [‘fb_exact’ for closed-loop exact]

Returns

b [numerator coefficient ndarray]

a [denominator coefficient ndarray]

Notes

With the exception of the loop amplifier gain, all other parameters are hard-coded from Case Study example.

Examples

>>> b,a = position_CD(Ka,'fb_approx')
>>> b,a = position_CD(Ka,'fb_exact')

sk_dsp_comm.sigsys.prin_alias(f_in, fs)
Calculate the principle alias frequencies.

Given an array of input frequencies the function returns an array of principle alias frequencies.

Parameters

f_in [ndarray of input frequencies]

fs [sampling frequency]

Returns

f_out [ndarray of principle alias frequencies]

Examples

>>> # Linear frequency sweep from 0 to 50 Hz
>>> f_in = arange(0,50,0.1)
>>> # Calculate principle alias with fs = 10 Hz
>>> f_out = prin_alias(f_in,10)

sk_dsp_comm.sigsys.rc_imp(Ns, alpha, M=6)
A truncated raised cosine pulse used in digital communications.

The pulse shaping factor 0 < 𝛼 < 1 is required as well as the truncation factor M which sets the pulse duration
to be 2*M*Tsymbol.
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Parameters

Ns [number of samples per symbol]

alpha [excess bandwidth factor on (0, 1), e.g., 0.35]

M [equals RC one-sided symbol truncation factor]

Returns

b [ndarray containing the pulse shape]

Notes

The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communi-
cations waveform.

Examples

Ten samples per symbol and alpha = 0.35.

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import rc_imp
>>> b = rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()

sk_dsp_comm.sigsys.rect(t, tau)
Approximation to the rectangle pulse Pi(t/tau).

In this numerical version of Pi(t/tau) the pulse is active over -tau/2 <= t <= tau/2.

Parameters

t [ndarray of the time axis]

tau [the pulse width]

Returns

x [ndarray of the signal Pi(t/tau)]

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import rect
>>> t = arange(-1,5,.01)
>>> x = rect(t,1.0)
>>> plt.plot(t,x)
>>> plt.ylim([0, 1.01])
>>> plt.show()

To turn on the pulse at t = 1 shift t.
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>>> x = rect(t - 1.0,1.0)
>>> plt.plot(t,x)
>>> plt.ylim([0, 1.01])
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sk_dsp_comm.sigsys.rect_conv(n, N_len)
The theoretical result of convolving two rectangle sequences.

The result is a triangle. The solution is based on pure analysis. Simply coded as opposed to efficiently coded.

Parameters

n [ndarray of time axis]

N_len [rectangle pulse duration]

Returns

y [ndarray of of output signal]
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Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import rect_conv
>>> n = arange(-5,20)
>>> y = rect_conv(n,6)
>>> plt.plot(n, y)
>>> plt.show()

sk_dsp_comm.sigsys.scatter(x, Ns, start)
Sample a baseband digital communications waveform at the symbol spacing.

Parameters

x [ndarray of the input digital comm signal]

Ns [number of samples per symbol (bit)]

start [the array index to start the sampling]

Returns

xI [ndarray of the real part of x following sampling]

xQ [ndarray of the imaginary part of x following sampling]

Notes

Normally the signal is complex, so the scatter plot contains clusters at points in the complex plane. For a binary
signal such as BPSK, the point centers are nominally +/-1 on the real axis. Start is used to eliminate transients
from the FIR pulse shaping filters from appearing in the scatter plot.

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> x,b, data = ss.NRZ_bits(1000,10,'rc')
>>> # Add some noise so points are now scattered about +/-1
>>> y = ss.cpx_AWGN(x,20,10)
>>> yI,yQ = ss.scatter(y,10,60)
>>> plt.plot(yI,yQ,'.')
>>> plt.axis('equal')
>>> plt.ylabel("Quadrature")
>>> plt.xlabel("In-Phase")
>>> plt.grid()
>>> plt.show()

sk_dsp_comm.sigsys.simpleQuant(x, Btot, Xmax, Limit)
A simple rounding quantizer for bipolar signals having Btot = B + 1 bits.

This function models a quantizer that employs Btot bits that has one of three selectable limiting types: saturation,
overflow, and none. The quantizer is bipolar and implements rounding.

Parameters

x [input signal ndarray to be quantized]
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Btot [total number of bits in the quantizer, e.g. 16]

Xmax [quantizer full-scale dynamic range is [-Xmax, Xmax]]

Limit = Limiting of the form ‘sat’, ‘over’, ‘none’

Returns

xq [quantized output ndarray]

Notes

The quantization can be formed as e = xq - x

Examples

>>> import matplotlib.pyplot as plt
>>> from matplotlib.mlab import psd
>>> import numpy as np
>>> from sk_dsp_comm import sigsys as ss
>>> n = np.arange(0,10000)
>>> x = np.cos(2*np.pi*0.211*n)
>>> y = ss.sinusoidAWGN(x,90)
>>> Px, f = psd(y,2**10,Fs=1)
>>> plt.plot(f, 10*np.log10(Px))
>>> plt.ylim([-80, 25])
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel(r'Normalized Frequency $\omega/2\pi$')
>>> plt.show()
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>>> yq = ss.simpleQuant(y,12,1,'sat')
>>> Px, f = psd(yq,2**10,Fs=1)
>>> plt.plot(f, 10*np.log10(Px))
>>> plt.ylim([-80, 25])
>>> plt.ylabel("Power Spectral Density (dB)")

(continues on next page)
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(continued from previous page)

>>> plt.xlabel(r'Normalized Frequency $\omega/2\pi$')
>>> plt.show()
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sk_dsp_comm.sigsys.simple_SA(x, NS, NFFT, fs, NAVG=1, window=’boxcar’)
Spectral estimation using windowing and averaging.

This function implements averaged periodogram spectral estimation estimation similar to the NumPy’s psd()
function, but more specialized for the the windowing case study of Chapter 16.

Parameters

x [ndarray containing the input signal]

NS [The subrecord length less zero padding, e.g. NS < NFFT]

NFFT [FFT length, e.g., 1024 = 2**10]

fs [sampling rate in Hz]

NAVG [the number of averages, e.g., 1 for deterministic signals]

window [hardcoded window ‘boxcar’ (default) or ‘hanning’]

Returns

f [ndarray frequency axis in Hz on [0, fs/2]]

Sx [ndarray the power spectrum estimate]

Notes

The function also prints the maximum number of averages K possible for the input data record.

Examples
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>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sk_dsp_comm import sigsys as ss
>>> n = np.arange(0,2048)
>>> x = np.cos(2*np.pi*1000/10000*n) + 0.01*np.cos(2*np.pi*3000/10000*n)
>>> f, Sx = ss.simple_SA(x,128,512,10000)
>>> plt.plot(f, 10*np.log10(Sx))
>>> plt.ylim([-80, 0])
>>> plt.xlabel("Frequency (Hz)")
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.show()
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With a hanning window.

>>> f, Sx = ss.simple_SA(x,256,1024,10000,window='hanning')
>>> plt.plot(f, 10*np.log10(Sx))
>>> plt.xlabel("Frequency (Hz)")
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.ylim([-80, 0])

sk_dsp_comm.sigsys.sinusoidAWGN(x, SNRdB)
Add white Gaussian noise to a single real sinusoid.

Input a single sinusoid to this function and it returns a noisy sinusoid at a specific SNR value in dB. Sinusoid
power is calculated using np.var.

Parameters

x [Input signal as ndarray consisting of a single sinusoid]

SNRdB [SNR in dB for output sinusoid]

Returns

y [Noisy sinusoid return vector]
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Examples

>>> # set the SNR to 10 dB
>>> n = arange(0,10000)
>>> x = cos(2*pi*0.04*n)
>>> y = sinusoidAWGN(x,10.0)

sk_dsp_comm.sigsys.soi_snoi_gen(s, SIR_dB, N, fi, fs=8000)
Add an interfering sinusoidal tone to the input signal at a given SIR_dB.

The input is the signal of interest (SOI) and number of sinsuoid signals not of interest (SNOI) are addedto the
SOI at a prescribed signal-to- intereference SIR level in dB.

Parameters

s [ndarray of signal of SOI]

SIR_dB [interference level in dB]

N [Trim input signal s to length N + 1 samples]

fi [ndarray of intereference frequencies in Hz]

fs [sampling rate in Hz, default is 8000 Hz]

Returns

r [ndarray of combined signal plus intereference of length N+1 samples]

Examples

>>> # load a speech ndarray and trim to 5*8000 + 1 samples
>>> fs,s = from_wav('OSR_us_000_0030_8k.wav')
>>> r = soi_snoi_gen(s,10,5*8000,[1000, 1500])

sk_dsp_comm.sigsys.splane(b, a, auto_scale=True, size=[-1, 1, -1, 1])
Create an s-plane pole-zero plot.
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As input the function uses the numerator and denominator s-domain system function coefficient ndarrays b and
a respectively. Assumed to be stored in descending powers of s.

Parameters

b [numerator coefficient ndarray.]

a [denominator coefficient ndarray.]

auto_scale [True]

size [[xmin,xmax,ymin,ymax] plot scaling when scale = False]

Returns

(M,N) [tuple of zero and pole counts + plot window]

Notes

This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the
right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via
the function signal.unique_roots.

Examples

>>> # Here the plot is generated using auto_scale
>>> splane(b,a)
>>> # Here the plot is generated using manual scaling
>>> splane(b,a,False,[-10,1,-10,10])

sk_dsp_comm.sigsys.sqrt_rc_imp(Ns, alpha, M=6)
A truncated square root raised cosine pulse used in digital communications.

The pulse shaping factor 0< alpha < 1 is required as well as the truncation factor M which sets the pulse duration
to be 2*M*Tsymbol.

Parameters

Ns [number of samples per symbol]

alpha [excess bandwidth factor on (0, 1), e.g., 0.35]

M [equals RC one-sided symbol truncation factor]

Returns

b [ndarray containing the pulse shape]

Notes

The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communi-
cations waveform. When square root raised cosine (SRC) pulse is used generate Tx signals and at the receiver
used as a matched filter (receiver FIR filter), the received signal is now raised cosine shaped, this having zero
intersymbol interference and the optimum removal of additive white noise if present at the receiver input.
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Examples

>>> # ten samples per symbol and alpha = 0.35
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import sqrt_rc_imp
>>> b = sqrt_rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()

sk_dsp_comm.sigsys.step(t)
Approximation to step function signal u(t).

In this numerical version of u(t) the step turns on at t = 0.

Parameters

t [ndarray of the time axis]

Returns

x [ndarray of the step function signal u(t)]

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import step
>>> t = arange(-1,5,.01)
>>> x = step(t)
>>> plt.plot(t,x)
>>> plt.ylim([-0.01, 1.01])
>>> plt.show()
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To turn on at t = 1, shift t.
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>>> x = step(t - 1.0)
>>> plt.ylim([-0.01, 1.01])
>>> plt.plot(t,x)
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sk_dsp_comm.sigsys.ten_band_eq_filt(x, GdB, Q=3.5)
Filter the input signal x with a ten-band equalizer having octave gain values in ndarray GdB.

The signal x is filtered using octave-spaced peaking filters starting at 31.25 Hz and stopping at 16 kHz. The Q
of each filter is 3.5, but can be changed. The sampling rate is assumed to be 44.1 kHz.

Parameters

x [ndarray of the input signal samples]

GdB [ndarray containing ten octave band gain values [G0dB,. . . ,G9dB]]

Q [Quality factor vector for each of the NB peaking filters]

Returns

y [ndarray of output signal samples]

Examples

>>> # Test with white noise
>>> w = randn(100000)
>>> y = ten_band_eq_filt(x,GdB)
>>> psd(y,2**10,44.1)

sk_dsp_comm.sigsys.ten_band_eq_resp(GdB, Q=3.5)
Create a frequency response magnitude plot in dB of a ten band equalizer using a semilogplot (semilogx()) type
plot

Parameters

GdB [Gain vector for 10 peaking filters [G0,. . . ,G9]]

Q [Quality factor for each peaking filter (default 3.5)]
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Returns

Nothing [two plots are created]

Examples

>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> ss.ten_band_eq_resp([0,10.0,0,0,-1,0,5,0,-4,0])
>>> plt.show()

sk_dsp_comm.sigsys.to_wav(filename, rate, x)
Write a wave file.

A wrapper function for scipy.io.wavfile.write that also includes int16 scaling and conversion. Assume input x is
[-1,1] values.

Parameters

filename [file name string]

rate [sampling frequency in Hz]

Returns

Nothing [writes only the *.wav file]

Examples

>>> to_wav('test_file.wav', 8000, x)

sk_dsp_comm.sigsys.tri(t, tau)
Approximation to the triangle pulse Lambda(t/tau).

In this numerical version of Lambda(t/tau) the pulse is active over -tau <= t <= tau.

Parameters

t [ndarray of the time axis]

tau [one half the triangle base width]

Returns

x [ndarray of the signal Lambda(t/tau)]

Examples

>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import tri
>>> t = arange(-1,5,.01)
>>> x = tri(t,1.0)
>>> plt.plot(t,x)
>>> plt.show()

To turn on at t = 1, shift t.
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>>> x = tri(t - 1.0,1.0)
>>> plt.plot(t,x)

1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

sk_dsp_comm.sigsys.unique_cpx_roots(rlist, tol=0.001)
The average of the root values is used when multiplicity is greater than one.

Mark Wickert October 2016

sk_dsp_comm.sigsys.upsample(x, L)
Upsample by factor L

Insert L - 1 zero samples in between each input sample.

Parameters

x [ndarray of input signal values]

L [upsample factor]
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Returns

y [ndarray of the output signal values]

Examples

>>> y = upsample(x,3)

sk_dsp_comm.sigsys.zplane(b, a, auto_scale=True, size=2, detect_mult=True, tol=0.001)
Create an z-plane pole-zero plot.

Create an z-plane pole-zero plot using the numerator and denominator z-domain system function coefficient
ndarrays b and a respectively. Assume descending powers of z.

Parameters

b [ndarray of the numerator coefficients]

a [ndarray of the denominator coefficients]

auto_scale [bool (default True)]

size [plot radius maximum when scale = False]

Returns

(M,N) [tuple of zero and pole counts + plot window]

Notes

This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the
right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via
the function signal.unique_roots.

Examples

>>> # Here the plot is generated using auto_scale
>>> zplane(b,a)
>>> # Here the plot is generated using manual scaling
>>> zplane(b,a,False,1.5)

2.6.12 synchronization

A Digital Communications Synchronization and PLLs Function Module

Copyright (c) March 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.
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THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

sk_dsp_comm.synchronization.DD_carrier_sync(z, M, BnTs, zeta=0.707, type=0)
z_prime,a_hat,e_phi = DD_carrier_sync(z,M,BnTs,zeta=0.707,type=0) Decision directed carrier phase tracking

z = complex baseband PSK signal at one sample per symbol M = The PSK modu-
lation order, i.e., 2, 8, or 8.

BnTs = time bandwidth product of loop bandwidth and the symbol period, thus the
loop bandwidth as a fraction of the symbol rate.

zeta = loop damping factor type = Phase error detector type: 0 <> ML, 1 <> heuristic

z_prime = phase rotation output (like soft symbol values)

a_hat = the hard decision symbol values landing at the constellation values

e_phi = the phase error e(k) into the loop filter

Ns = Nominal number of samples per symbol (Ts/T) in the carrier phase tracking
loop, almost always 1

Kp = The phase detector gain in the carrier phase tracking loop; This value de-
pends upon the algorithm type. For the ML scheme described at the end of notes
Chapter 9, A = 1, K 1/sqrt(2), so Kp = sqrt(2).

Mark Wickert July 2014

Motivated by code found in M. Rice, Digital Communications A Discrete-Time Approach, Prentice Hall, New
Jersey, 2009. (ISBN 978-0-13-030497-1).

sk_dsp_comm.synchronization.NDA_symb_sync(z, Ns, L, BnTs, zeta=0.707, I_ord=3)

z = complex baseband input signal at nominally Ns samples per symbol

Ns = Nominal number of samples per symbol (Ts/T) in the symbol tracking
loop, often 4

BnTs = time bandwidth product of loop bandwidth and the symbol period, thus the
loop bandwidth as a fraction of the symbol rate.

zeta = loop damping factor

I_ord = interpolator order, 1, 2, or 3

e_tau = the timing error e(k) input to the loop filter
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Kp = The phase detector gain in the symbol tracking loop; for the NDA algoithm used
here always 1

Mark Wickert July 2014

Motivated by code found in M. Rice, Digital Communications A Discrete-Time Approach, Prentice Hall, New
Jersey, 2009. (ISBN 978-0-13-030497-1).

sk_dsp_comm.synchronization.PLL1(theta, fs, loop_type, Kv, fn, zeta, non_lin)
Baseband Analog PLL Simulation Model

Parameters

• theta – input phase deviation in radians

• fs – sampling rate in sample per second or Hz

• loop_type – 1, first-order loop filter F(s)=K_LF; 2, integrator with lead compensation
F(s) = (1 + s tau2)/(s tau1), i.e., a type II, or 3, lowpass with lead compensation F(s) = (1 +
s tau2)/(1 + s tau1)

• Kv – VCO gain in Hz/v; note presently assume Kp = 1v/rad and K_LF = 1; the user can
easily change this

• fn – Loop natural frequency (loops 2 & 3) or cutoff frquency (loop 1)

• zeta – Damping factor for loops 2 & 3

• non_lin – 0, linear phase detector; 1, sinusoidal phase detector

Returns theta_hat = Output phase estimate of the input theta in radians, ev = VCO control voltage,
phi = phase error = theta - theta_hat

Notes

Alternate input in place of natural frequency, fn, in Hz is the noise equivalent bandwidth Bn in Hz.

Mark Wickert, April 2007 for ECE 5625/4625 Modified February 2008 and July 2014 for ECE 5675/4675
Python version August 2014

sk_dsp_comm.synchronization.PLL_cbb(x, fs, loop_type, Kv, fn, zeta)
Baseband Analog PLL Simulation Model

Parameters

• x – input phase deviation in radians

• fs – sampling rate in sample per second or Hz

• loop_type – 1, first-order loop filter F(s)=K_LF; 2, integrator with lead compensation
F(s) = (1 + s tau2)/(s tau1), i.e., a type II, or 3, lowpass with lead compensation F(s) = (1 +
s tau2)/(1 + s tau1)

• Kv – VCO gain in Hz/v; note presently assume Kp = 1v/rad and K_LF = 1; the user can
easily change this

• fn – Loop natural frequency (loops 2 & 3) or cutoff frequency (loop 1)

• zeta – Damping factor for loops 2 & 3

Returns theta_hat = Output phase estimate of the input theta in radians, ev = VCO control voltage,
phi = phase error = theta - theta_hat
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Mark Wickert, April 2007 for ECE 5625/4625 Modified February 2008 and July 2014 for ECE 5675/4675
Python version August 2014

sk_dsp_comm.synchronization.phase_step(z, Ns, p_step, Nstep)
Create a one sample per symbol signal containing a phase rotation step Nsymb into the waveform.

Parameters

• z – complex baseband signal after matched filter

• Ns – number of sample per symbol

• p_step – size in radians of the phase step

• Nstep – symbol sample location where the step turns on

Returns the one sample symbol signal containing the phase step

Mark Wickert July 2014

sk_dsp_comm.synchronization.time_step(z, Ns, t_step, Nstep)
Create a one sample per symbol signal containing a phase rotation step Nsymb into the waveform.

Parameters

• z – complex baseband signal after matched filter

• Ns – number of sample per symbol

• t_step – in samples relative to Ns

• Nstep – symbol sample location where the step turns on

Returns the one sample per symbol signal containing the phase step

Mark Wickert July 2014

2.7 Indices and tables

• genindex

• modindex

• search
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Python Module Index

s
sk_dsp_comm.coeff2header, 61
sk_dsp_comm.digitalcom, 62
sk_dsp_comm.fec_conv, 74
sk_dsp_comm.fir_design_helper, 79
sk_dsp_comm.iir_design_helper, 82
sk_dsp_comm.multirate_helper, 86
sk_dsp_comm.pyaudio_helper, 88
sk_dsp_comm.rtlsdr_helper, 91
sk_dsp_comm.sigsys, 92
sk_dsp_comm.synchronization, 140
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Index

A
am_rx() (in module sk_dsp_comm.sigsys), 97
am_rx_BPF() (in module sk_dsp_comm.sigsys), 97
am_tx() (in module sk_dsp_comm.sigsys), 99
available_devices() (in module

sk_dsp_comm.pyaudio_helper), 90
AWGN_chan() (in module sk_dsp_comm.digitalcom), 62

B
bandpass_order() (in module

sk_dsp_comm.fir_design_helper), 80
bandstop_order() (in module

sk_dsp_comm.fir_design_helper), 80
binary() (in module sk_dsp_comm.fec_conv), 75
biquad2() (in module sk_dsp_comm.sigsys), 100
bit_errors() (in module sk_dsp_comm.digitalcom), 68
bit_errors() (in module sk_dsp_comm.sigsys), 100
bm_calc() (sk_dsp_comm.fec_conv.fec_conv method),

76
BPSK_BEP() (in module sk_dsp_comm.digitalcom), 62
BPSK_tx() (in module sk_dsp_comm.digitalcom), 63
BPSK_tx() (in module sk_dsp_comm.sigsys), 93

C
CA_code_header() (in module

sk_dsp_comm.coeff2header), 61
cascade_filters() (in module sk_dsp_comm.sigsys), 101
cb_active_plot() (sk_dsp_comm.pyaudio_helper.DSP_io_stream

method), 89
chan_est_equalize() (in module

sk_dsp_comm.digitalcom), 69
CIC() (in module sk_dsp_comm.sigsys), 93
complex2wav() (in module sk_dsp_comm.rtlsdr_helper),

91
conv_encoder() (sk_dsp_comm.fec_conv.fec_conv

method), 76
conv_integral() (in module sk_dsp_comm.sigsys), 101
conv_Pb_bound() (in module sk_dsp_comm.fec_conv),

75

conv_sum() (in module sk_dsp_comm.sigsys), 102
cpx_AWGN() (in module sk_dsp_comm.sigsys), 104
cruise_control() (in module sk_dsp_comm.sigsys), 105

D
DD_carrier_sync() (in module

sk_dsp_comm.synchronization), 141
deci24() (in module sk_dsp_comm.sigsys), 105
delta_eps() (in module sk_dsp_comm.sigsys), 106
depuncture() (sk_dsp_comm.fec_conv.fec_conv method),

77
dimpulse() (in module sk_dsp_comm.sigsys), 106
discrim() (in module sk_dsp_comm.rtlsdr_helper), 91
dn() (sk_dsp_comm.multirate_helper.multirate_FIR

method), 86
dn() (sk_dsp_comm.multirate_helper.multirate_IIR

method), 87
dn() (sk_dsp_comm.multirate_helper.rate_change

method), 88
downsample() (in module sk_dsp_comm.sigsys), 107
drect() (in module sk_dsp_comm.sigsys), 108
DSP_callback_tic() (sk_dsp_comm.pyaudio_helper.DSP_io_stream

method), 89
DSP_callback_toc() (sk_dsp_comm.pyaudio_helper.DSP_io_stream

method), 89
DSP_capture_add_samples()

(sk_dsp_comm.pyaudio_helper.DSP_io_stream
method), 89

DSP_capture_add_samples_stereo()
(sk_dsp_comm.pyaudio_helper.DSP_io_stream
method), 89

DSP_io_stream (class in sk_dsp_comm.pyaudio_helper),
88

dstep() (in module sk_dsp_comm.sigsys), 108

E
env_det() (in module sk_dsp_comm.sigsys), 110
ex6_2() (in module sk_dsp_comm.sigsys), 111
eye_plot() (in module sk_dsp_comm.digitalcom), 69
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eye_plot() (in module sk_dsp_comm.sigsys), 111

F
farrow_resample() (in module sk_dsp_comm.digitalcom),

70
fec_conv (class in sk_dsp_comm.fec_conv), 76
filter() (sk_dsp_comm.multirate_helper.multirate_FIR

method), 87
filter() (sk_dsp_comm.multirate_helper.multirate_IIR

method), 87
FIR_fix_header() (in module

sk_dsp_comm.coeff2header), 61
FIR_header() (in module sk_dsp_comm.coeff2header),

61
fir_iir_notch() (in module sk_dsp_comm.sigsys), 112
fir_remez_bpf() (in module

sk_dsp_comm.fir_design_helper), 80
fir_remez_bsf() (in module

sk_dsp_comm.fir_design_helper), 80
fir_remez_hpf() (in module

sk_dsp_comm.fir_design_helper), 80
fir_remez_lpf() (in module

sk_dsp_comm.fir_design_helper), 80
firwin_bpf() (in module

sk_dsp_comm.fir_design_helper), 80
firwin_kaiser_bpf() (in module

sk_dsp_comm.fir_design_helper), 80
firwin_kaiser_bsf() (in module

sk_dsp_comm.fir_design_helper), 81
firwin_kaiser_hpf() (in module

sk_dsp_comm.fir_design_helper), 81
firwin_kaiser_lpf() (in module

sk_dsp_comm.fir_design_helper), 81
firwin_lpf() (in module sk_dsp_comm.fir_design_helper),

81
freq_resp() (sk_dsp_comm.multirate_helper.multirate_FIR

method), 87
freq_resp() (sk_dsp_comm.multirate_helper.multirate_IIR

method), 87
freqz_cas() (in module sk_dsp_comm.iir_design_helper),

84
freqz_resp() (in module sk_dsp_comm.multirate_helper),

86
freqz_resp_cas_list() (in module

sk_dsp_comm.iir_design_helper), 84
freqz_resp_list() (in module

sk_dsp_comm.coeff2header), 61
freqz_resp_list() (in module

sk_dsp_comm.fir_design_helper), 81
freqz_resp_list() (in module

sk_dsp_comm.iir_design_helper), 85
from_wav() (in module sk_dsp_comm.sigsys), 113
fs_approx() (in module sk_dsp_comm.sigsys), 115
fs_coeff() (in module sk_dsp_comm.sigsys), 115

fsk_BEP() (in module sk_dsp_comm.rtlsdr_helper), 92
ft_approx() (in module sk_dsp_comm.sigsys), 116

G
get_LR() (sk_dsp_comm.pyaudio_helper.DSP_io_stream

method), 89
get_samples() (sk_dsp_comm.pyaudio_helper.loop_audio

method), 91
GMSK_bb() (in module sk_dsp_comm.digitalcom), 63

H
hard_Pk() (in module sk_dsp_comm.fec_conv), 79

I
IIR_bpf() (in module sk_dsp_comm.iir_design_helper),

82
IIR_bsf() (in module sk_dsp_comm.iir_design_helper),

83
IIR_hpf() (in module sk_dsp_comm.iir_design_helper),

83
IIR_lpf() (in module sk_dsp_comm.iir_design_helper),

83
IIR_sos_header() (in module

sk_dsp_comm.coeff2header), 61
in_out_check() (sk_dsp_comm.pyaudio_helper.DSP_io_stream

method), 90
interactive_stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream

method), 90
interp24() (in module sk_dsp_comm.sigsys), 119

L
line_spectra() (in module sk_dsp_comm.sigsys), 119
lms_ic() (in module sk_dsp_comm.sigsys), 120
loop_audio (class in sk_dsp_comm.pyaudio_helper), 91
lowpass_order() (in module

sk_dsp_comm.fir_design_helper), 81
lp_samp() (in module sk_dsp_comm.sigsys), 122
lp_tri() (in module sk_dsp_comm.sigsys), 122

M
m_seq() (in module sk_dsp_comm.sigsys), 124
mono_FM() (in module sk_dsp_comm.rtlsdr_helper), 92
MPSK_bb() (in module sk_dsp_comm.digitalcom), 63
multirate_FIR (class in sk_dsp_comm.multirate_helper),

86
multirate_IIR (class in sk_dsp_comm.multirate_helper),

87
mux_pilot_blocks() (in module

sk_dsp_comm.digitalcom), 71
my_psd() (in module sk_dsp_comm.digitalcom), 71
my_psd() (in module sk_dsp_comm.sigsys), 124
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N
NDA_symb_sync() (in module

sk_dsp_comm.synchronization), 141
NRZ_bits() (in module sk_dsp_comm.sigsys), 94
NRZ_bits2() (in module sk_dsp_comm.sigsys), 94

O
OA_filter() (in module sk_dsp_comm.sigsys), 95
OFDM_rx() (in module sk_dsp_comm.digitalcom), 64
OFDM_tx() (in module sk_dsp_comm.digitalcom), 66
OS_filter() (in module sk_dsp_comm.sigsys), 96

P
pack_LR() (sk_dsp_comm.pyaudio_helper.DSP_io_stream

method), 90
PCM_decode() (in module sk_dsp_comm.digitalcom), 67
PCM_encode() (in module sk_dsp_comm.digitalcom), 67
peaking() (in module sk_dsp_comm.sigsys), 125
phase_step() (in module sk_dsp_comm.synchronization),

143
pilot_PLL() (in module sk_dsp_comm.rtlsdr_helper), 92
PLL1() (in module sk_dsp_comm.synchronization), 142
PLL_cbb() (in module sk_dsp_comm.synchronization),

142
PN_gen() (in module sk_dsp_comm.sigsys), 96
position_CD() (in module sk_dsp_comm.sigsys), 125
prin_alias() (in module sk_dsp_comm.sigsys), 127
puncture() (sk_dsp_comm.fec_conv.fec_conv method),

77

Q
Q_fctn() (in module sk_dsp_comm.digitalcom), 68
QAM_bb() (in module sk_dsp_comm.digitalcom), 67
QAM_SEP() (in module sk_dsp_comm.digitalcom), 67
QPSK_bb() (in module sk_dsp_comm.digitalcom), 68
QPSK_BEP() (in module sk_dsp_comm.digitalcom), 68
QPSK_rx() (in module sk_dsp_comm.digitalcom), 68
QPSK_tx() (in module sk_dsp_comm.digitalcom), 68

R
rate_change (class in sk_dsp_comm.multirate_helper), 87
rc_imp() (in module sk_dsp_comm.digitalcom), 72
rc_imp() (in module sk_dsp_comm.sigsys), 127
rect() (in module sk_dsp_comm.sigsys), 128
rect_conv() (in module sk_dsp_comm.sigsys), 129
RZ_bits() (in module sk_dsp_comm.digitalcom), 68

S
scatter() (in module sk_dsp_comm.digitalcom), 72
scatter() (in module sk_dsp_comm.sigsys), 130
sccs_bit_sync() (in module sk_dsp_comm.rtlsdr_helper),

92
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