scikit-dsp-comm Documentation Release 1.3.0 Mark Wickert, Chiranth Siddappa # **CONTENTS** | 1 | Readme | 1 | | | | | |----|-------------------------------|-----|--|--|--|--| | | 1.1 scikit-dsp-comm | 1 | | | | | | 2 | Examples | 7 | | | | | | | 2.1 Jupyter Notebook Examples | 7 | | | | | | | coeff2header | | | | | | | | digitalcom | 94 | | | | | | | fec_conv | 112 | | | | | | | fir_design_helper | | | | | | | | iir_design_helper | | | | | | | | multirate_helper | 130 | | | | | | | pyaudio_helper | | | | | | | | rtlsdr_helper | | | | | | | | sigsys | | | | | | | | synchronization | | | | | | | 3 | Indices and tables | 201 | | | | | | Ру | Python Module Index | | | | | | | In | ndex () | 205 | | | | | # **ONE** # **README** # 1.1 scikit-dsp-comm pypi Docs # 1.1.1 New RTL-SDR streaming added! A feature story at the end of this readme. Readthedocs also contains a nice collection of Jupyter notebook examples, including RTL-SDR streaming, among the module documentation. The actual notebook files (.ipynb) are in the docs folder at nb_examples. This folder is in the master branch once you have cloned the repo. Click the *docs* badge above to be taken to the documentation. # 1.1.2 Background The origin of this package comes from the writing the book Signals and Systems for Dummies, published by Wiley in 2013. The original module for this book is named ssd.py. In scikit-dsp-comm this module is renamed to sigsys.py to better reflect the fact that signal processing and communications theory is founded in signals and systems, a traditional subject in electrical engineering curricula. # 1.1.3 Package High Level Overview This package is a collection of functions and classes to support signal processing and communications theory teaching and research. The foundation for this package is scipy.signal. The code in particular currently requires Python >=3.5x. The real-time audio DSP capabilities of pyaudio_helper allow for two channel algorithm development with real-time user control enabled by the ipywidgets when running in the Jupyter notebook. Finally, we now can utilize the real-time DSP capabilities of pyaudio_helper to work in combination with streaming of I/Q samples using new functions rtlsdr_helper. This allows in particular demodulation of radio signals and downsampling to baseband analog signals for streaming playback of say an FM broadcast station. This new capability is featured as a short *article* at the end of this readme file. #### There are presently ten modules that make up scikit-dsp-comm: - 1. sigsys.py for basic signals and systems functions both continuous-time and discrete-time, including graphical display tools such as pole-zero plots, up-sampling and down-sampling. - 2. digitalcomm.py for digital modulation theory components, including asynchronous resampling and variable time delay functions, both useful in advanced modem testing. - 3. synchronization.py which contains phase-locked loop simulation functions and functions for carrier and phase synchronization of digital communications waveforms. - 4. fec_conv.py for the generation rate one-half and one-third convolutional codes and soft decision Viterbi algorithm decoding, including soft and hard decisions, trellis and trellis-traceback display functions, and puncturing. - 5. fir_design_helper.py which for easy design of lowpass, highpass, bandpass, and bandstop filters using the Kaiser window and equal-ripple designs, also includes a list plotting function for easily comparing magnitude, phase, and group delay frequency responses. - 6. iir_design_helper.py which for easy design of lowpass, highpass, bandpass, and bandstop filters using scipy.signal Butterworth, Chebyshev I and II, and elliptical designs, including the use of the cascade of second-order sections (SOS) topology from scipy.signal, also includes a list plotting function for easily comparing of magnitude, phase, and group delay frequency responses. - 7. multirate.py that encapsulate digital filters into objects for filtering, interpolation by an integer factor, and decimation by an integer factor. - 8. coeff2header.py write C/C++ header files for FIR and IIR filters implemented in C/C++, using the cascade of second-order section representation for the IIR case. This last module find use in real-time signal processing on embedded systems, but can be used for simulation models in C/C++. Presently the collection of modules contains about 125 functions and classes. The authors/maintainers are working to get more detailed documentation in place. 2 Chapter 1. Readme #### **Extras** This package contains the helper modules rtlsdr_helper, and pyaudio_helper which require the packages pyrtlsdr and PyAudio. To use the full functionality of these helpers, install the package from the scikit-dsp-comm folder as follows:\ ``` pip install -e .[helpers] ``` Installation is described in greater detail below. - 1. pyaudio_helper.py wraps a class around the code required in PyAudio (wraps the C++ library PortAudio) to set up a non-blocking audio input/output stream. The user only has to write the callback function to implement real-time DSP processing using any of the input/output devices available on the platform. This resulting object also contains a capture buffer for use in post processing and a timing markers for assessing the processing time utilized by the callback function. When developing apps in the Jupyter Notebook there is support for the IPywidgets along with threading. - 2. rtlsdr_helper.py interfaces with pyrtldsr to provide a simple captures means for complex baseband software defined radio (SDR) samples from the low-cost (~\$20) RTL-SDR USB hardware dongle. The remaining functions in this module support the implementation of demodulators for FM modulation and examples of complete receivers for FM mono, FM stereo, and tools for FSK demodulation, including bit synchronization. Real-time streaming is a new capability included. #### 1.1.4 Documentation Documentation is now housed on readthedocs which you can get to by clicking the docs badge near the top of this README. Example notebooks can be viewed on GitHub pages. In time more notebook postings will be extracted from Dr. Wickert's Info Center. # 1.1.5 Getting Set-up on Your System The best way to use this package is to clone this repository and then install it. ``` git clone https://github.com/mwickert/scikit-dsp-comm.git ``` There are package dependencies for some modules that you may want to avoid. Specifically these are whenever hardware interfacing is involved. Specific hardware and software configuration details are discussed in wiki pages. For Windows users pip install takes care of almost everything. I assume below you have Python on your path, so for example with Anaconda, I suggest letting the installer set these paths up for you. # Dependencies for pyaudio Across the three popular platforms, Windows, macOS, and Linux, pyaudio, is the underlying framework that pyaudio_helper relies upon. Getting PyAudio configured is different for all three OS's. Conda and CondaForge have support for installing pyaudio on both Linux and Windows. Under Python 3.6 and below PyAudio will install when pip installing the scikit-dsp-comm package, as described below. For Python 3.7+ PyAudio first needs to be installed using conda install pyaudio to obtain binary (wh1) files. All the capability of the package is available less PyAudio and the RTL-SDR radio, without doing any special installations. See the wiki pages for more information. Just keep in mind that now a Python 3.7+ install on windows must include the installation PyAudio as described above. ## **Editable Install with Dependencies** With the terminal in the root directory of the cloned repo perform an editable pip install using ``` pip install -e .[helpers] ``` ## **Editable Install without Dependencies** To install without the PyAudio and RTL-SDR dependency, and hence not be able to use those modules, ``` pip install -e . ``` #### Why an Editable Install? The advantage of the editable pip install is that it is very easy to keep scikit-dsp-comm up to date. If you know that updates have been pushed to the master branch, you simply go to your local repo folder and ``` git pull origin master ``` This will update you local repo and automatically update the Python install without the need to run pip again. **Note**: If you have any Python kernels running, such as a Jupyter Notebook, you will need to restart the kernel to insure any module changes get reloaded. # 1.1.6 Feature: Added Software Defined Radio Streaming to rtlsdr_helper with Interface to pyaudio_helper A recent push to the master branch now allows real-time SDR streaming from the RTL-SDR to pyaudio_helper. In this first release of the API, the system block diagram takes the from shown in the figure below: ``` rtlsdr_helper_streaming_block.png Block diagram for RTL-SDR streaming ``` This capability is made possible via the new aynch and await capabilities of Python 3.7. For the details as to how this works you have to dig into the details found in the module rtlsdr_helper.py and the examples found in the notebook rtlsdr_helper_streaming_sample.ipynb. A screenshot from the sample Jupyter notebook, that implements a broadcast FM receiver, is shown below: ``` rtlsdr_helper_streaming_FM_receiver.png Code snippet for an FM radio receiver. ``` This is just the beginning of making a complete SDR receiver possible in a Jupyter notebook. Not only is the receiver a reality, the algorithms that implement the receiver, in Python, can easily be coded by the user. 4 Chapter 1. Readme To help develop demodulator algorithms a streaming code block interface standard, of sorts, is being developed this summer. The idea is to provide examples of how to write a simple Python class that will manage states in the DSP code that is inside the *Callback Process* block of the block diagram. More details by the end of the summer is expected, along with another
sample notebook. 6 Chapter 1. Readme **CHAPTER** **TWO** # **EXAMPLES** • SciPy 2017 Tutorial # 2.1 Jupyter Notebook Examples ``` [1]: %pylab inline import sk_dsp_comm.sigsys as ss import scipy.signal as signal from IPython.display import Image, SVG Populating the interactive namespace from numpy and matplotlib [2]: pylab.rcParams['savefig.dpi'] = 100 # default 72 %config InlineBackend.figure_formats=['svg'] # SVG inline viewing ``` # 2.1.1 Introduction to Python and the Jupyter Notebook ``` [3]: t = arange(-4,4,.01) x = cos(2*pi*t) plot(t,x) grid() ``` # 2.1.2 Rectangle and Triangle Pulses Defined Before showing more examples, consider some familiar signal primitives in your signals and systems background. To see these defined in the text see in particular Appendix F.5 (p.727) in the table of Fourier transform pairs. # Rectangle $$\Pi\left(\frac{t}{\tau}\right) = \begin{cases} 1, & |t| \le \tau/2\\ 0, & \text{otherwise} \end{cases}$$ (2.1) **Triangle** $$\Lambda\left(\frac{t}{\tau}\right) = \begin{cases} 1 - |t/\tau|, & |t| \le \tau \\ 0, & \text{otherwise} \end{cases}$$ (2.2) To more readily play with these function represent them numerically in Python. The module ss.py has some waveform primitives to help. ``` [4]: t = arange(-5,5,.01) x_rect = ss.rect(t-3,2) x_tri = ss.tri(t+2,1.5) subplot(211) plot(t,x_rect) grid() ylabel(r'$\Pi((t-3)/2)$'); subplot(212) plot(t,x_tri) grid() xlabel(r'Time (s)') ylabel(r'$\Lambda((t+2)/1.5)$'); tight_layout() ``` • Consider an interactive version of the above: ``` [5]: # Make an interactive version of the above from ipywidgets import interact, interactive def pulses_plot(D1,D2,W1,W2): t = arange(-5, 5, .01) x_rect = ss.rect(t-D1, W1) x_{tri} = ss.tri(t-D2,W2) subplot (211) plot(t,x_rect) grid() ylabel(r'$\Pi((t-3)/2)$'); subplot (212) plot(t,x_tri) grid() xlabel(r'Time (s)') ylabel(r'$\Lambda((t+2)/1.5)$'); tight_layout() interactive_plot = interactive(pulses_plot, D1 = (-3,3,.5), D2 = (-3,3,.5), W1 = (0.5, \hookrightarrow 2,.25), W2 = (0.5,2,.25)); output = interactive_plot.children[-1] output.layout.height = '350px' interactive_plot interactive(children=(FloatSlider(value=0.0, description='D1', max=3.0, min=-3.0, _ ⇒step=0.5), FloatSlider(value... ``` ## **More Signal Plotting** The basic pulse shapes (primitives) defined in the module ssd.py are very useful for working Text 2.13a &d, but there are also times when you need a custom piecewise function. # **Simple Cases:** Consider plotting - $x_1(t) = \sin(2\pi \cdot 5t)\Pi((t-2)/2)$ for $0 \le t \le 10$ - $x_2(t) = \sum_{n=-\infty}^{\infty} = \Pi((t-5n)/1) \text{ for } -10 \le t \le 10$ ``` [6]: t1 = arange(0,10+.01,.01) # arange stops one step size less than the upper limit x1 = sin(2*pi*5*t1)* ss.rect(t1-2,2) subplot (211) plot(t1,x1) xlabel(r'Time (s)') ylabel(r'$x_1(t)$') grid() t2 = arange(-10, 10, .01) # Tweak mod() to take on negative values x2 = ss.rect(mod(t2+2.5, 5)-2.5, 1) subplot (212) plot(t2, x2) xlabel(r'Time (s)') ylabel(r'$x_2(t)$') grid() tight_layout() ``` ## **Custom Piecewise:** A custom piecewise function is a direct and to the point way of getting a more complex function plotted. Consider plotting: $$x_3(t) = \begin{cases} 1 + t^2, & 0 \le t \le 3\\ \cos(2\pi \cdot 5 \cdot t) & 3 < t \le 5\\ 0, & \text{otherwise} \end{cases}$$ (2.3) for $-2 \le t \le 6$. ``` [7]: def x3_func(t): """ Create a piecewise function for plotting x3 """ x3 = zeros_like(t) for k,tk in enumerate(t): if tk >= 0 and tk <= 3: x3[k] = 1 + tk**2 elif tk > 3 and tk <= 5: x3[k] = cos(2*pi*5*tk) return x3</pre> ``` ``` [8]: t3 = arange(-2,6+.01,.01) x3 = x3_func(t3) plot(t3,x3) xlabel(r'Time (s)') ylabel(r'$x_3(t)$') xlim([-2,6]) grid() ``` ``` [9]: 26/2 [9]: 13.0 ``` # 2.1.3 Energy and Power Signals The general definitions are: $$E \stackrel{\Delta}{=} \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt$$ (2.4) $$P \stackrel{\Delta}{=} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \tag{2.5}$$ For the case of a periodic signal, you can take the definition of P above and reduce the calculation down to $$P = \frac{1}{T} \int_{t_0}^{t_0 + T} |x(t)|^2 dt$$ (2.6) where t_0 can be any convenient value. Consider the waveform of Text problem 2.14b $$x_2(t) = \sum_{n = -\infty}^{\infty} \Lambda\left(\frac{t - 3n}{2}\right) \tag{2.7}$$ You can create an approximation to the waveform over a finite number of periods by doing a little programming: ``` [10]: def periodic_tri(t,tau,T,N): """ Approximate x2(t) by running the sum index from -N to +N. The period is set by T and tau is the tri pulse width parameter (base width is 2*tau). Mark Wickert January 2015 """ x = zeros_like(t) for n in arange(-N,N+1): x += ss.tri(t-T*n,tau) return x ``` ``` [11]: t = arange(-10,10,.001) x = periodic_tri(t,2,6,10) plot(t,x) plot(t,abs(x)**2) grid() #xlim([-5,5]) xlabel(r'Time (s)') ylabel(r'$x_2(t)$ and $x_2^2(t)$'); ``` ``` [11]: Text(0, 0.5, '$x_2(t)$ and $x_2^2(t)$') ``` For the power calculation create a time array that runs over exactly one period. Below is the case for the original problem statement. ``` [12]: T0 = 6 tp = arange(-T0/2, T0/2+.001, .001) xp = periodic_tri(tp, 2, T0, 5) plot(tp, xp) plot(tp, abs(xp)**2) legend((r'$x(t)$', r'$|x(t)|^2$'),loc='best',shadow=True) grid(); xlim([-T0/2, T0/2]) xlabel(r'Time (s)') ylabel(r'$x_2(t)$ and $x_2^2(t)$'); [12]: Text(0, 0.5, '$x_2(t)$ and $x_2^2(t)$') ``` A simple numerical approximation to the integral $$P = \frac{1}{T} \int_0^T |x_b(t)|^2 dt$$ (2.8) is shown below: ``` [13]: #Power calculation Px2 = (1/T0)*sum(xp**2)*.001 # rectangular partitions for integral print('Power estimate via numerical integration: %2.4f W' % Px2) Power estimate via numerical integration: 0.2222 W ``` #### Power in the Sum of Two Sinusoids The problem is what is the power in the signal $$x(t) = A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2), -\infty < t < \infty$$ $$(2.9)$$ Since we are not certain that x(t) is periodic, the power calculation requires that we form $$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt = \langle |x(t)|^2 \rangle$$ (2.10) • Rather that just jumping in and making a mess, consider first the expansion of $|x(t)|^2 = x^2(t)$: $$x^{2}(t) = \frac{A_{1}^{2}}{2} \left[1 + \cos(2\omega_{1}t + \phi_{1}) \right] + \frac{A_{2}^{2}}{2} \left[1 + \cos(2\omega_{2}t + \phi_{2}) \right]$$ (2.11) $$+2\frac{A_1A_2}{2}\left\{\cos[(\omega_1+\omega_2)t+(\phi_1+\phi_2)]+\cos[(\omega_1-\omega_2)t+(\phi_1-\phi_2)]\right\}$$ (2.12) - The time average operator is linear, so we consider () operating on each term of the above independently - For $\omega_1 \neq \omega_2$, the first two terms yield $A_1^2/2$ and $A_2^2/2$ respectively - The last term requires some thinking, but as long as $\omega_1 \neq \omega_2$ the times average of $\cos[(\omega_1 + \omega_2)t + (\phi_1 + \phi_2)]$ and $\cos[(\omega_1 \omega_2)t + (\phi_1 \phi_2)]$, the two terms respectively are each zero! · Finally, $$P_x = \frac{A_1^2}{2} + \frac{A_2^2}{2} \tag{2.13}$$ • When the frequencies are equal, then you can combine the terms using trig identities (recall the phasor addition formula from ECE 2610 $$x(t) = A\cos(\omega t + \phi) \tag{2.14}$$ where $\omega = \omega_1 = \omega_2$ and Theory: 8.00, 4.50, 12.50 [14]: t = arange(-10, 10, .001) $$Ae^{j\phi} = A_1 e^{j\phi_1} + A_2 e^{j\phi_2} \tag{2.15}$$ ``` x1 = 4 \cdot \cos(2 \cdot pi \cdot 10 \cdot t) x2 = 3*\cos(2*pi*3.45*t+pi/9) plot(t, x1) plot(t, x2) plot(t, x1+x2) grid() xlabel(r'Time (s)') ylabel(r'Amplitude') legend((r'x_1(t), r'x_2(t), r'x_1(t), r'x_1(t), r'x_2(t), loc='best', shadow=True) xlim([-.1,.1]); [14]: (-0.1, 0.1) [15]: print('Power calculations: %3.2f, %3.2f, %3.2f' \ % (var(x1), var(x2), var(x1+x2))) Power calculations: 8.00, 4.50, 12.50 [16]: print('Theory: %3.2f, %3.2f, %3.2f' \ % (4**2/2,3**2/2,4**2/2+3**2/2)) ``` # 2.1.4 Fourier Series and Line Spectra Plotting Being able to easily plot the line spectra of periodic signals will hopefully enhance your understanding. The module ss.py contains the function $ss.line_spectra()$ for this purpose. The function assumes that the Fourier coefficients, X_n are available for a real signal x(t). The function plots line spectra as: * The two-sided magnitude spectra * The two-sided magnitude spectra in dB with an adjustable floor level in dB * The two-sided phase spectra in radians * The one-sided line spectra corresponding to the three cases listed immediately above Examples are given below for the case of a simple pulse train and then for a trapezoidal pulse train. In the case of the trapezoidal pulse train the underlying Fourier coefficients are obtained numerically using the FFT as described in the course notes. A fundamental requirement in using $ss.line_spectra()$ is to beable to supply the coefficients starting with the DC term coefficient X_0 and moving up to the Nth harmonic. Before plotting the pulse train line spectra I first describe a *helper* function for visualizing the pulse train waveform. ## **Pulse Train** ``` [17]: def pulse_train(Np, fs, tau, t0): Generate a discrete-time approximation to a continuous-time pulse train signal. Amplitude values are [0,1]. Scale and offset later if needed. Inputs Np = number of periods to generate fs = samples per period tau = duty cycle t0 = pulse delay time relative to first rising edge at t = 0 Return t = time axis array x = waveform Mark Wickert, January 2015 t = arange(0, Np*fs+1, 1)/fs #time is normalized to make period T0 = 1.0 x = zeros_like(t) # Using a brute force approach, just fill x with the sample values for k,tk in enumerate(t): if mod(tk-t0,1) \le tau and mod(tk-t0,1) \ge 0: x[k] = 1 return t,x ``` ``` [18]: tau = 1/8; fs = 8*16; t0 = 0 # note t0 = tau/2 subplot (211) t,x = pulse_train(4,fs,tau,t0) plot(t,x) # Just a plot of xa(t) ylim([-.1,1.1]) grid() ylabel(r'$x_a(t)$') subplot (212) t,x = pulse_train(4,fs,tau,t0) plot(t, 1-x) # Note here y(t) = 1 - x(t), a special case of
ylim([-.1,1.1]) # y(t) = A + B*x(t) in the notes grid() xlabel(r'Time (t/T_0)') ylabel(r'$x_b(t)$'); [18]: Text(0, 0.5, '$x_b(t)$') ``` ## **Example: Pulse Train Line Spectra** For the case of pulse train having the initial pulse starting at t = 0, i.e., $$x(t) = \sum_{k=-\infty}^{\infty} A \cdot \Pi\left(\frac{t - \tau/2 - kT_0}{\tau}\right),\tag{2.16}$$ the Fourier coefficient are given by $$X_n = A \cdot \frac{\tau}{T_0} \cdot \operatorname{sinc}(nf_0\tau) \cdot \exp(-j2\pi n f_0 t_0)$$ (2.17) where $f_0 = 1/T_0$ is the fundamental frequency and here $t_0 = \tau/2$. Line spectra plotting is shown below for this case. If the pulse train should be shifted in time to some other orientation, then the phase plot will change, as the included $\exp(j2\pi n f_0 t_0)$ term will be different. **Note:** The pulse train function define above is slightly different from the pulse train defined in the book and shown in mathematical form as x(t) just above in this cell. The function pulse_train() has the first pulse starting exactly at t=0. To move the pule train right or left on the time axis, you can use the function parameter t = 0. ``` [19]: n = arange(0,25+1) # Get 0 through 25 harmonics tau = 0.125; f0 = 1; A = 1; Xn = A*tau*f0*sinc(n*f0*tau)*exp(-1j*2*pi*n*f0*tau/2) # Xn = -Xn # Convert the coefficients from xa(t) t0 xb(t) # Xn[0] += 1 figure(figsize=(6,2)) f = n # Assume a fundamental frequency of 1 Hz so f = n ss.line_spectra(f,Xn,mode='mag',sides=2,fsize=(6,2)) xlim([-25,25]); #ylim([-50,10]) figure(figsize=(6,2)) ss.line_spectra(f,Xn,mode='phase',fsize=(6,2)) xlim([-25,25]); [19]: (-25.0, 25.0) <pre ``` #### **Example: Trapezoidal Pulse** Consider the line spectra of a finite rise and fall time pulse train is of practical interest. The function <code>trap_pulse()</code> allows you first visualize one period of the trapezoidal pulse train, and then use this waveform in obtaining numerically the Fourier coefficients of this signal. PLotting the corresponding line spectra follows. A point to be main is that by slowing down the edges (rise time/fall time) of the pulse train the amplitude of the harmonics falls off more rapidly. When considering the clock speed in todays PCs this can be a good thing as harmonic emission is an issue. ``` n = arange(0, N) t = n/N xp = zeros(len(t)) # Assume tr and tf are equal T1 = tau + tr # Create one period of the trapezoidal pulse waveform for k in n: if t[k] <= tr: xp[k] = t[k]/tr elif (t[k] > tr and t[k] \le tau): xp[k] = 1 elif (t[k] > tau and t[k] < T1): xp[k] = -t[k]/tr + 1 + tau/tr; else: xp[k] = 0 return xp, t ``` Let $\tau = 1/8$ and $t_r = 1/20$: ``` [21]: # tau = 1/8, tr = 1/20 N = 1024 xp,t = trap_pulse(N,1/8,1/20) Xp = fft.fft(xp) figure (figsize=(6,2)) plot(t,xp) grid() title(r'Spectra of Finite Risetime Pulse Train: $\tau = 1/8$ $t_r = 1/20$') ylabel(r'$x(t)$') xlabel('Time (s)') f = arange(0, N/2) ss.line_spectra(f[0:25],Xp[0:25]/N,'magdB',floor_dB=-80,fsize=(6,2)) ylabel(r'$|X_n| = |X(f_n)|$ (dB)'); \#\% tau = 1/8, tr = 1/10 xp,t = trap_pulse(N,1/8,1/10) Xp = fft.fft(xp) figure (figsize=(6,2)) plot(t,xp) grid() title(r'Spectra of Finite Risetime Pulse Train: $\tau = 1/8$ $t_r = 1/10$') ylabel(r'$x(t)$') xlabel('Time (s)') ss.line_spectra(f[0:25], Xp[0:25]/N, 'magdB', floor_dB=-80, fsize=(6,2)) ylabel(r'$|X_n| = |X(f_n)|$ (dB)'); [21]: Text(0, 0.5, '$|X_n| = |X(f_n)|$ (dB)') ``` With the edge speed slowed down it is clear that the harmonics drop off faster. ## 2.1.5 Fourier Transforms The Fourier transfrom definition is: $$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt$$ (2.18) $$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df$$ (2.19) A numerical approximation to the Fourier transform is possible using the FFT, or more conveniently using the function freqz() from the package scipy.signal. A helper function to abstract some of the digital signal processing details is f, $X = FT_approx(x,dt,Nfft)$. The function is now part of sigsys.py with name change to ft_approx(): ``` [22]: def FT_approx(x,t,Nfft): Approximate the Fourier transform of a finite duration signal using scipy.signal.freqz() Inputs x = input signal array t = time array used to create x(t) Nfft = the number of frdquency domain points used to approximate X(f) on the interval [fs/2, fs/2], where fs = 1/Dt. Dt being the time spacing in array t Return f = frequency axis array in Hz X = the Fourier transform approximation (complex) Mark Wickert, January 2015 111 fs = 1/(t[1] - t[0]) t0 = (t[-1]+t[0])/2 \# time delay at center N0 = len(t)/2 \# FFT center in samples f = arange(-1/2, 1/2, 1/Nfft) w, X = signal.freqz(x, 1, 2*pi*f) X /= fs # account for dt = 1/fs in integral X \leftarrow \exp(-1j*2*pi*f*fs*t0) \# time interval correction X \leftarrow \exp(1j*2*pi*f*N0) \# FFT time interval is [0,Nfft-1] F = f * f s return F, X ``` # **Example: Rectangular Pulse** As as simple starting point example, consider $x(t) = \Pi(t\tau)$. The well known result for the Fourier transfrom (FT) is: $$X(f) = \mathcal{F}\left\{\Pi\left(\frac{t}{\tau}\right)\right\} = \tau \operatorname{sinc}(f\tau)$$ (2.20) We now use the above defined FT_approx() to obtain a numerical approximation to the FT of the rectangular pulse. **Tips:** * Make sure the signal is well contained on the time interval used to generate x(t) * Make sure the sampling rate, one over the sample spacing, is adequate to represent the signal spectrum * From sampling theory, the reange of frequencies represented by the spectrum estimate will be $f_s/2 \le f < f_s/2$ ``` [23]: fs = 100 \# sampling rate in Hz tau = 1 t = arange(-5, 5, 1/fs) x0 = ss.rect(t-.5, tau) figure (figsize=(6,5)) subplot (311) plot(t, x0) grid() ylim([-0.1, 1.1]) xlim([-2,2]) title(r'Exact Waveform') xlabel(r'Time (s)') ylabel(r'$x_0(t)$'); # FT Exact Plot fe = arange(-10, 10, .01) X0e = tau*sinc(fe*tau) subplot (312) plot(fe, abs(X0e)) #plot(f, angle(X0)) grid() xlim([-10, 10]) title(r'Exact Spectrum Magnitude') xlabel(r'Frequency (Hz)') ylabel(r'$|X_0e(f)|$'); # FT Approximation Plot f, X0 = ss.ft_approx(x0, t, 4096) subplot (313) plot(f,abs(X0)) #plot(f, angle(X0)) grid() xlim([-10, 10]) title(r'Approximation Spectrum Magnitude') xlabel(r'Frequency (Hz)') ylabel(r'$|X_0(f)|$'); tight_layout() ``` ## **Example: Text Problem 2.31a Drill Down** In this problem you are given $$x_1(t) = \Pi\left(\frac{t+1/2}{1}\right) - \Pi\left(\frac{t-1/2}{1}\right)$$ (2.21) The Fourier transfrom of this signal can be found using *linearity* and the *time delay* theorems. $$X_1(f) = \mathcal{F}\left\{\Pi\left(\frac{t+1/2}{1}\right) - \Pi\left(\frac{t-1/2}{1}\right)\right\}$$ (2.22) $$= \operatorname{sinc}(f) \cdot \left[e^{j2\pi f \cdot 1/2} - e^{-j2\pi f \cdot 1/2} \right] \times \frac{2j}{2j}$$ (2.23) $$= 2j\operatorname{sinc}(f) \cdot \sin(\pi f) \tag{2.24}$$ ``` [24]: fs = 100 t = arange(-5, 5, 1/fs) x1 = ss.rect(t+1/2,1)-ss.rect(t-1/2,1) subplot (211) plot(t, x1) grid() ylim([-1.1, 1.1]) xlim([-2,2]) xlabel(r'Time (s)') ylabel(r'$x_1(t)$'); fe = arange(-10, 10, .01) X1e = 2 * 1j * sinc(fe) * sin(pi * fe) f, X1 = ss.ft_approx(x1, t, 4096) subplot (212) plot(f, abs(X1)) plot (fe, abs (X1e)) #plot(f, angle(X1)) legend((r'Num Approx', r'Exact'), loc='best') grid() xlim([-10, 10]) xlabel(r'Frequency (Hz)') ylabel(r'$|X_1(f)|$'); tight_layout() ``` · Notice the numerical approximation and exact spectral plots overlay one another # **Example: Modulation Theorem** Consider the modulation theorem, which is extremely important to communications theory: $$y(t) = x(t) \cdot \cos(2\pi f_0 t) \tag{2.25}$$ $$Y(f) = \frac{1}{2} \left[X(f - f_0) + X(f + f_0) \right]$$ (2.26) Here we will use a triangle pulse for x(t): ``` [25]: fs = 100 \# sampling rate in Hz tau = 1 t = arange(-5, 5, 1/fs) x3 = ss.tri(t,tau) y = x3*cos(2*pi*10*t) subplot (211) plot(t, x3) plot(t,y) grid() ylim([-1.1, 1.1]) xlim([-2,2]) legend((r'$x_3(t)$', r'$y(t)$'),loc='lower right',shadow=True) title(r'Time Domain: x_3(t) and y(t)=x_3(t) \cos(2\pi t) xlabel(r'Time (s)') ylabel(r'$y(t)$'); f,Y = ss.ft_approx(y,t,4096) subplot (212) plot(f,abs(Y)) #plot(f, angle(X0)) grid() ``` (continues on next page) ``` title(r'Frequency Domain: $Y(f)$') xlim([-15,15]) xlabel(r'Frequency (Hz)') ylabel(r'$|Y(f)|$'); tight_layout() ``` # **Example: Representing a Bandlimited Signal** We know that in theory a bandlimited signal can only be generated from a signal having infinite duration. Specifically, a signal with rectangular spectrum has Fourier transfrom pair: $$x(t) = 2W \operatorname{sinc}(2Wt) \stackrel{\mathcal{F}}{\Leftrightarrow} \Pi\left(\frac{f}{2W}\right) = X(f)$$ (2.27) In a simulation we expect to have troubles modeling the finite duration aspects of the signal. ``` [26]: fs = 100 \# sampling rate in Hz W = 5 t = arange(-5, 5, 1/fs) x4 = 2 *W*sinc(2*W*t) figure(figsize=(6,2)) plot(t, x4) grid() #ylim([-1.1,1.1]) xlim([-2,2]) title(r'Time Domain: $x_4(t), \ W = 5$ Hz') xlabel(r'Time (s)') ylabel(r'$x_4(t)$'); f,X4 = ss.ft_approx(x4,t,4096) figure(figsize=(6,2)) plot(f, abs(X4)) grid() title(r'Frequency Domain: $X_4(f)$') xlim([-10, 10]) xlabel(r'Frequency (Hz)') ylabel(r'$|X_4(f)|$'); figure (figsize=(6,2)) plot(f,20*log10(abs(X4))) grid() title(r'Frequency Domain: $X_4(f)$ in dB') ylim([-50, 5]) xlim([-10, 10]) xlabel(r'Frequency (Hz)') ylabel(r'$|X_4(f)|$ (dB)'); [26]: Text(0, 0.5, '$|X_4(f)|$ (dB)') ``` **Note:** The dB version (last plot) reveals that the first sidelobes of the spectrum are only down ~21dB. Increasing the length of the time window will not help. The spectral side lobes will become more tightly packed, but the first sidelobe will still be down only 21dB. With other pulse shapes in the time domain, i.e., note simply a truncted sinc() function reduced sidelobes can be obtained. # 2.1.6 Convolution • The convolution of two signals $x_1(t)$ and $x_2(t)$ is defined as $$x(t) = x_1(t) * x_2(t) = \int_{-\infty}^{\infty} x_1(\lambda) x_2(t - \lambda) d\lambda$$ (2.28) $$= x_2(t) * x_1(t) = \int_{-\infty}^{\infty} x_2(\lambda)
x_1(t - \lambda) \, d\lambda$$ (2.29) • A special convolution case is $\delta(t-t_0)$ $$\delta(t - t_0) * x(t) = \int_{-\infty}^{\infty} \delta(\lambda - t_0) x(t - \lambda) d\lambda$$ (2.30) $$=x(t-\lambda)\big|_{\lambda=t_0}=x(t-t_0) \tag{2.31}$$ You can experiment with the convolution integral numerically using ssd.conv_integral() found in the module ssd.py. ``` [27]: t = arange(-2,2.001,.001) p1 = ss.rect(t,1) p2 = ss.rect(t,3) y,ty = ss.conv_integral(p1,t,p2,t) plot(ty,y) ylim([-.01,1.01]) grid() xlabel(r'Time (s)') ylabel(r'$y(t)$'); [27]: Text(0, 0.5, '$y(t)$') ``` For convolutions involving semi-infinite signals, such as u(t), you can tell $ssd.conv_integral()$ about this via the optional extent argument. See the function help using ``` ss.conv_integral? ``` ``` [28]: # Consider a pulse convolved with an exponential ('r' type extent) tx = arange(-1,8,.01) x = ss.rect(tx-2,4) # pulse starts at t = 0 h = 4*exp(-4*tx)*ss.step(tx) y,ty = ss.conv_integral(x,tx,h,tx,extent=('f','r')) # note extents set plot(ty,y) # expect a pulse charge and discharge waveform grid() title(r'$\Pi((t-2)/4)\ast 4 e^{-4t} u(t)$') xlabel(r'Time (s)') ylabel(r'$y(t)$'); [28]: Text(0, 0.5, '$y(t)$') ``` # 2.1.7 Spectrum of PN Sequence (exact) The cell below is a copy of the earlier pulse train line spectra example. Use this as a template to create the solution to the PN code problem of HW 3. ``` [29]: n = arange(0,25+1) \# Get 0 through 25 harmonics tau = 0.125; f0 = 1; A = 1; Xn = A*tau*f0*sinc(n*f0*tau)*exp(-1j*2*pi*n*f0*tau/2) \# Xn = -Xn \# Convert the coefficients from xa(t) t0 xb(t) \# Xn[0] += 1 figure (figsize=(6,2)) f = n \# Assume a fundamental frequency of 1 Hz so <math>f = n ss.line_spectra(f, Xn, mode='mag', sides=2, fsize=(6,2)) xlim([-25, 25]); #ylim([-50,10]) figure (figsize=(6,2)) ss.line_spectra(f, Xn, mode='phase', fsize=(6,2)) xlim([-25, 25]); [29]: (-25.0, 25.0) <Figure size 432x144 with 0 Axes> <Figure size 432x144 with 0 Axes> ``` # 2.1.8 Spectrum of PN Sequence (approx) The code below approximates the PSD of the PN code using a numerical approximation to the Fourier coefficients, X_n . This development may be useful for the lab, as you can easily change the waveform level without having to rework the theory. The approach taken here to create one period of the PN waveform at 10 samples per bit. The line containing the function ss.upsample() converts the bit sequence into a waveform by upsampling and filtering with a rectangular pulse shape (ones (10)). The function $ss.fs_coeff()$ numerically calculates the X_n 's. To plot the PSD from the Fourier coefficients we use $$S_x(f) = \sum_{n = -\infty}^{\infty} |X_n|^2 \delta(f - nf_0)$$ where f_0 in this case is $1/(MT_0)$ with T_0 beging the bit period and M the code period in bits. ``` [30]: x_PN4 = ss.m_seq(4) x = signal.lfilter(ones(10),1,ss.upsample(x_PN4,10)) t = arange(0,len(x))/10 figure(figsize=(6,2)) plot(t,x); title(r'Time Domain and PSD of $M=15$ PN Code with $T = 1$') xlabel(r'Time (s)') ylabel(r'x(t)') axis([0,15,-0.1,1.1]); grid() # 10 samples/bit so 150 samples/period # harmonics spaced by 1/(15*T) = 1/15 ``` (continues on next page) ``` (continued from previous page) Xk, fk = ss.fs_coeff(x, 45, 1/15) ss.line_spectra(fk, Xk, 'magdB', lwidth=2.0, floor_dB=-50, fsize=(6,2)) xlim([-3,3]) ylabel(r'$|X_n| = |X(f_n)|$ (dB)'); [30]: Text(0, 0.5, |X_n| = |X(f_n)| (dB)') [31]: # Line spacing 1/15 [31]: 0.06666666666666666 [32]: import sk_dsp_comm.digitalcom as dc y_PN5_bits = ss.PN_gen(10000,5) # Convert to waveform level shifted to +/-1 amplitude y = 2*signal.lfilter(ones(10), 1, ss.upsample(y_PN5_bits, 10))-1 # Find the time averaged autocorrelation function normalized # to have a peak amplitude of 1 Ry, tau = dc.xcorr(y, y, 400) # We know Ry is real so strip small imag parts from FFT-based calc Ry = Ry.real [33]: fs = 10 t = arange(len(y))/fs plot(t[:500],y[:500]) title(r'PN Waveform for 5 Stages (Period $2^5 -1 = 31$ bits)') ylabel(r'Amplitude') xlabel(r'Bits (10 samples/bit)') grid(); [34]: tau_s = tau/10 figure(figsize=(6,2)) plot(tau_s,Ry) title(r'Autocorrelation and PSD Estimates for $M=31$ with $T = 1$') xlabel(r'Autocorrelation Lag τ (s)') ylabel(r'$R_y(\tau)$') grid(); figure (figsize=(6,2)) psd(y, 2**12, 10) xlabel(r'Frequency (Hz)') ylabel(r'$S_y(f)$ (dB)') #xlim([0,.002]); ylim([-30,20]); [34]: (-30.0, 20.0) ``` In Lab 2 of ECE 4670 a C/C++ version of a PN generator is implemented to run the ARM mbed LPC 1768 microcontroller (https://www.sparkfun.com/products/9564). At the heart of this code is: ``` // Globals defined as unsigned int tap1 -= 1; tap2 -= 1; mask1 = 0x1 << (tap1);</pre> ``` (continues on next page) ``` mask2 = 0x1 << (tap2); bit = 0x0; sync = 0x0; void gen_PN() { my_pin5 = bit; my_pin6 = synch_bit; led2 = bit; led3 = synch_bit; if (clk_state == 0x1) // Advance m-sequence generator by one bit // XOR tap1 and tap2 SR values and feedback to input fb = ((sr \& mask1) >> tap1) ^ ((sr \& mask2) >> tap2); sr = (sr << 1) + fb; bit = sr & 0x1; // Use random number generator in place of m-sequence bits if (DIP_sw4) bit = rand_int() & 0x1; clk_state = 0x0; // See if all 1's condition exists in SR if ((sr & synch) == synch) { synch_bit = 0x1; } else { synch_bit = 0x0; } else if (DIP_sw1) bit = !bit; clk_state = 0x1; } ``` The data type is unsigned int, which on the mbed is uint16_t, an unsigned 16-bit integer. A single unsigned integer is used as a 16-bit shift register with the LSB, furthest bit to the right, used to represent the first register stage. The shift register is advanced using a left shift << bitwise operation. We can code this Python almost directly, as shown below. ``` [35]: class bitwise_PN(object): """ Implement a PN generator using bitwise manipulation for the shift register. The LSB holds b0 and bits are shifted left. +---+---+---+---+---+---+ sr = |bM-1| .. |bM-k| .. | b2 | b1 | b0 | +---+---+----+----+----+ | | | Feedback:(tap1-1) (tap2-1) Shift left using << Mark Wickert February 2017 """ def __init__(self,tap1,tap2,Nstage,sr_initialize): (continues on next page) ``` n n n (continued from previous page) ``` Initialize the PN generator object self.tap1 = tap1 - 1 self.tap2 = tap2 - 1 self.mask1 = 0x1 << (tap1 - 1) # to select bit of interest</pre> self.mask2 = 0x1 << (tap2 - 1) # to select bit of interest</pre> self.Nstage = Nstage self.period = 2**Nstage - 1 self.sr = sr_initialize self.bit = 0 self.sync_bit = 0 def clock_PN(self): Method to advance m-sequence generator by one bit XOR tap1 and tap2 SR values and feedback to input 1.1.1 fb = ((self.sr & self.mask1)>> self.tap1) ^ \ ((self.sr & self.mask2) >> self.tap2) self.sr = (self.sr << 1) + fb self.sr = self.sr & self.period # set MSBs > Nstage to 0 self.bit = self.sr & 0x1 # output LSB from SR # See if all 1's condition exits in SR, if so output a synch pulse if ((self.sr & self.period) == self.period): self.sync_bit = 0x1 else: self.sync_bit = 0x0 print('output = %d, sr contents = %s, sync bit = %d' \ % (self.bit, binary(self.sr, self.Nstage), self.sync_bit)) [36]: # A simple binary format display function which shows # leading zeros to a fixed bit width def binary(num, length=8): return format(num, '#0{}b'.format(length + 2)) [37]: PN1 = bitwise_PN(10,7,10,0x1) [38]: PN1.clock_PN() output = 0, sr contents = 0b000000010, sync bit = 0 [39]: # sr initial condition sr = 0b1 [40]: Nout = 20 x_out = zeros(Nout) s_out = zeros(Nout) PN1 = bitwise_PN(3,2,3,0x1) for k in range(Nout): PN1.clock_PN() x_{out}[k] = PN1.bit s_out[k] = PN1.sync_bit output = 0, sr contents = 0b010, sync bit = 0 output = 1, sr contents = 0b101, sync bit = 0 (continues on next page) ``` ``` output = 1, sr contents = 0b011, sync bit = 0 output = 1, sr contents = 0b111, sync bit = 1 output = 0, sr contents = 0b110, sync bit = 0 output = 0, sr contents = 0b100, sync bit = 0 output = 1, sr contents = 0b001, sync bit = 0 output = 0, sr contents = 0b010, sync bit = 0 output = 1, sr contents = 0b101, sync bit = 0 output = 1, sr contents = 0b011, sync bit = 0 output = 1, sr contents = 0b111, sync bit = 1 output = 0, sr contents = 0b110, sync bit = 0 output = 0, sr contents = 0b100, sync bit = 0 output = 1, sr contents = 0b001, sync bit = 0 output = 0, sr contents = 0b010, sync bit = 0 output = 1, sr contents = 0b101, sync bit = 0 output = 1, sr contents = 0b011, sync bit = 0 output = 1, sr contents = 0b111, sync bit = 1 output = 0, sr contents = 0b110, sync bit = 0 output = 0, sr contents = 0b100, sync bit = 0 [41]: stem(x_out) stem(0.2*s_out, markerfmt = 'ro') ylim([0,1.1]) ``` ``` [41]: (0.0, 1.1) ``` # **Cross Correlation and Signal Delay** The idea of the autocorrelation function can be extended to the cross correlation, that is the correlation or likeness between two signals, say x(t) and y(t). Define $$R_{xy}(\tau) = \langle x(t)y(t+\tau)\rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)y(t+\tau) dt$$ (2.32) Consider a simulation example using dc.xcorr(x,t,lags): ``` [42]: import sk_dsp_comm.digitalcom as dc x_PN4_bits = ss.PN_gen(10000, 6) # Convert to waveform level shifted to +/-1 amplitude x_s = 2*signal.lfilter(ones(10),1,ss.upsample(x_PN4_bits,10))-1 # Form a delayed version of x_S T_D = 35 \# 35 sample delay y_s = signal.lfilter(concatenate((zeros(T_D),array([1]))),1,x_s) figure (figsize=(6,2)) plot(x_s[:200]) plot(y_s[:200]) ylim([-1.1, 1.1]) title(r'Delayed and Undelayed Signals for $T_D = 35$ Samples') xlabel(r'Samples (10/PN bit)') ylabel(r'$x_s(t)$ and $y_s(t)$') # Find the time averaged autocorrelation function normalized # to have a peak amplitude of 1 Ryx,tau = dc.xcorr(y_s,x_s,200) #note order change # We know Ryx is real Ryx = Ryx.real ``` (continues on next page) ``` tau_s = tau/10 figure(figsize=(6,2)) plot(tau_s,Ryx) title(r'Cross Correlation for $M=4$ with $T = 1$ and Delay 35 Samples') xlabel(r'Autocorrelation Lag τ (s)') ylabel(r'$R_{yx}(\tau)$') grid(); ``` # 2.1.9 Spectral Containment Bandwidth (text problem 2.55) In text problem 2.55 you are
asked to find the 90% energy contain bandwidth of a signal $x_i(t)$. Specifically you are to find the lowpass or one-sided bandwidth of a baseband signal such that 90% of the total signal energy is contained in the bandwidth, B_{90} . You obtain B_{90} by solving the following equation $$0.9 = \frac{0.9E_{\text{total}}}{E_{\text{total}}} = \frac{\int_{-B_{90}}^{B_{90}} G(f)df}{\int_{-\infty}^{\infty} G(f)df} = \frac{2\int_{0}^{B_{90}} G(f)df}{2\int_{0}^{\infty} G(f)df} = \frac{\int_{0}^{B_{90}} G(f)df}{\int_{0}^{\infty} G(f)df},$$ (2.33) where $G(f) = |X_i(f)|^2$ is the energy spectral density of $x_i(t)$. For parts (c) and (d) the problem states you need to perform numerical integration. #### **Example:** In an exalier example found in this notebook I found the Fourier transform of $$x(t) = \Pi\left(\frac{t - \tau/2}{\tau}\right) - \Pi\left(\frac{t + \tau/2}{\tau}\right) \tag{2.34}$$ to be $$X(f) = 2j\operatorname{sinc}(f\tau) \cdot \sin(\pi f\tau) \tag{2.35}$$ Note I have modified the problem to now have pulse width τ to better match the homework problem where τ is a variable. The energy spectral density is $$G(f) = 4\operatorname{sinc}^{2}(f\tau) \cdot \sin^{2}(\pi f\tau) \tag{2.36}$$ I convenient way to numerically integrate G(f) is using simple reactangular partitions, but making sure that Δf is small relative to the changes in G(f). Since you do not know what the value of τ you consider a *normalized frequency* variable $f_n = f\tau$ in the analysis. The rest of the steps are: - 1. Sweep $G(f_n)$ using an array fn running from zero to f_n large enough to insure that $G(f_n)$ is very small relative to it largest value. In Python this is just filling an array, Gn with the functional values. - 2. Form a new array which contains the cumulative sum of the values in Gn, say Gn_cumsum = cumsum (Gn). Aso form the sum of the array values, i.e., Gn_tot = sum (Gn) - 3. Plot the ratio of `Gn_cumsum/Gn_sum versus fn. The curve should start at zero and climb to one as f_n becomes large. The value of f_n where the curve crosses through 0.9 is the 90% containment bandwidth. **Note:** You might notice that Δf , which is needed in the rectangular integration formula was never used. Why? In the calculation of the cumulative sum and the calculation of the total, both should include Δf , hence in the ration the values cancel out. Nice! # 2.1.10 Filter Analysis To facilitate the performance analysis of both discrete-time and continuous-time filters, the functions freqz_resp() and freqs_resp() are available (definitions below, respectively). With these functions you can quickly move from z-domain or s-domain rational system function coefficients to visualization of the filter frequency response * Magnitude * Magnitude in dB * Phase in radians * Group delay in samples or seconds (digital filter) * Group delay in seconds (analog filter) ``` [46]: def freqz_resp(b,a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)): A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self, mode = 'dB', Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqs_resp(b, a=[1], Dmin=1, Dmax=5, mode = 'dB', Npts = 1024, fsize=(6, 4)) b = ndarray of numerator coefficients a = ndarray of denominator coefficents Dmin = start frequency as 10 **Dmin Dmax = stop frequency as 10**Dmax mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz Npts = number of points to plot; defult is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 11 11 11 f = np.arange(0, Npts)/(2.0*Npts) w,H = signal.freqz(b,a,2*np.pi*f) ``` (continues on next page) ``` plt.figure(figsize=fsize) if mode.lower() == 'db': plt.plot(f*fs,20*np.log10(np.abs(H))) plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.plot(f*fs,np.angle(H)) plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'): Notes Since this calculation involves finding the derivative of the phase response, care must be taken at phase wrapping points and when the phase jumps by +/-pi, which occurs when the amplitude response changes sign. Since the amplitude response is zero when the sign changes, the jumps do not alter the group delay results. theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2*theta)/2. theta_dif = np.diff(theta2) f_diff = np.diff(f) Tg = -np.diff(theta2)/np.diff(w) max_Tg = np.max(Tg) #print (max_Tq) if mode.lower() == 'groupdelay_t': max_Tg /= fs plt.plot(f[:-1]*fs,Tg/fs) plt.ylim([0,1.2*max_Tg]) else: plt.plot(f[:-1]*fs,Tq) plt.ylim([0,1.2*max_Tg]) plt.xlabel('Frequency (Hz)') if mode.lower() == 'groupdelay_t': plt.ylabel('Group Delay (s)') else: plt.ylabel('Group Delay (samples)') plt.title('Frequency Response - Group Delay') else: s1 = 'Error, mode must be "dB", "phase, ' s2 = '"groupdelay_s", or "groupdelay_t"' print(s1 + s2) ``` ``` [47]: def freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode = 'dB',Npts = 1024,fsize=(6,4)): """ A method for displaying analog filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib ``` (continues on next page) ``` freqs_resp(b, a=[1], Dmin=1, Dmax=5, mode='dB', Npts=1024, fsize=(6, 4)) b = ndarray of numerator coefficients a = ndarray of denominator coefficents Dmin = start frequency as 10**Dmin Dmax = stop frequency as 10**Dmax mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay', all versus log frequency in Hz Npts = number of points to plot; defult is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 f = np.logspace(Dmin, Dmax, Npts) w, H = signal.freqs(b, a, 2*np.pi*f) plt.figure(figsize=fsize) if mode.lower() == 'db': plt.semilogx(f,20*np.log10(np.abs(H))) plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.semilogx(f,np.angle(H)) plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif mode.lower() == 'groupdelay': Notes See freqz_resp() for calculation details. theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2*theta)/2. theta dif = np.diff(theta2) f_diff = np_diff(f) Tg = -np.diff(theta2)/np.diff(w) max_Tg = np.max(Tg) #print (max_Tq) plt.semilogx(f[:-1],Tg) plt.ylim([0,1.2*max_Tg]) plt.xlabel('Frequency (Hz)') plt.ylabel('Group Delay (s)') plt.title('Frequency Response - Group Delay') else: print('Error, mode must be "dB" or "phase or "groupdelay"') ``` ## Example: Discrete-Time Chebyshev Type I Bandpass Filter ``` [48]: import sk_dsp_comm.iir_design_helper as iird import sk_dsp_comm.fir_design_helper as fird [49]: b1,a1,sos1 = iird.IIR_bpf(200,250,300,350,0.1,60.0,1000,'butter') b2,a2,sos2 = iird.IIR_bpf(200,250,300,350,0.1,60.0,1000,'cheby1') [50]: figure() iird.freqz_resp_cas_list([sos1, sos2], 'dB', 1000) ylim([-70,0]) grid(); figure() iird.freqz_resp_cas_list([sos1,sos2],'groupdelay_t',1000) grid(); figure() iird.sos_zplane(sos2) /home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.3.0/lib/ →python3.7/site-packages/scikit_dsp_comm-1.3.0-py3.7.egg/sk_dsp_comm/iir_design_ →helper.py:350: RuntimeWarning: divide by zero encountered in log10 plt.plot(f*fs,20*np.log10(np.abs(H))) /home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.3.0/lib/ →python3.7/site-packages/scikit_dsp_comm-1.3.0-py3.7.egg/sk_dsp_comm/iir_design_ →helper.py:350: RuntimeWarning: divide by zero encountered in log10 plt.plot(f*fs,20*np.log10(np.abs(H))) /home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.3.0/lib/ →python3.7/site-packages/scikit_dsp_comm-1.3.0-py3.7.egg/sk_dsp_comm/iir_design_ →helper.py:383: RuntimeWarning: divide by zero encountered in log10 idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] /home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.3.0/lib/ →python3.7/site-packages/scikit_dsp_comm-1.3.0-py3.7.egg/sk_dsp_comm/iir_design_ →helper.py:383: RuntimeWarning: invalid value encountered in multiply idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] /home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.3.0/lib/ →python3.7/site-packages/scikit_dsp_comm-1.3.0-py3.7.egg/sk_dsp_comm/iir_design_ →helper.py:383: RuntimeWarning: invalid value encountered in less idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] /home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.3.0/lib/ →python3.7/site-packages/scikit_dsp_comm-1.3.0-py3.7.egg/sk_dsp_comm/iir_design_ →helper.py:383: RuntimeWarning: divide by zero encountered in log10 idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] /home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.3.0/lib/ →python3.7/site-packages/scikit_dsp_comm-1.3.0-py3.7.egg/sk_dsp_comm/iir_design_ →helper.py:383: RuntimeWarning: invalid value encountered in multiply idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] /home/docs/checkouts/readthedocs.org/user_builds/scikit-dsp-comm/envs/v1.3.0/lib/ →python3.7/site-packages/scikit_dsp_comm-1.3.0-py3.7.egg/sk_dsp_comm/iir_design_ →helper.py:383: RuntimeWarning: invalid value encountered in less idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] [50]: (12, 12) <Figure size 432x288 with 0 Axes> <Figure size 432x288 with 0 Axes> ``` #### **Example: Continuous-Time Bessel Bandpass Filter** ```
[53]: bc,ac = signal.bessel(7,2*pi*array([10.0,50.0])*1e6,btype='bandpass',analog=True) [54]: freqs_resp(bc,ac,6,9,mode='dB',fsize=(6,2)) grid() ylim([-80,5]); freqs_resp(bc,ac,6,9,mode='groupdelay',fsize=(6,2)) grid() ``` ## **Second-Order Butterworth Lowpass Response** Consider a 3rd-order analog Butterworth is the s-domain having transfer function H(s). Using the scipy.signal function butter() we find the coefficients to the rational transfer function of the form: $$H(s) = \frac{\sum_{n=0}^{M} b_n s^n}{\sum_{n=0}^{N} a_n s^n}$$ (2.37) ``` [55]: b3,a3 = signal.butter(3,2*pi*1,analog=True) freqs_resp(b3,a3,-1,2,mode='dB',fsize=(6,2)) grid() ylim([-80,5]); freqs_resp(b3,a3,-1,2,mode='groupdelay',fsize=(6,2)) grid() ``` # Obtaining the Step Response via Simulation Time domain simulation of continuous time system can be performed using the signal.lsim() function. You have to make sure the time step is sufficiently small relative to the filter bandwidth. ``` [56]: t = arange(0,2,.0001) xs = ss.step(t) tout,ys,x_state = signal.lsim((b3,a3),xs,t) plot(t,ys) title(r'Third-Order Butterworth Step Response for $f_3 = 1$ Hz') ylabel(r'Ste Response') xlabel(r'Time (s)') grid(); ``` ``` [1]: %pylab inline import sk_dsp_comm.sigsys as ss import sk_dsp_comm.fir_design_helper as fir_d import sk_dsp_comm.uir_design_helper as iir_d import sk_dsp_comm.multirate_helper as mrh import scipy.signal as signal from IPython.display import Audio, display from IPython.display import Image, SVG Populating the interactive namespace from numpy and matplotlib ``` ``` [2]: %config InlineBackend.figure_formats=['svg'] # SVG inline viewing ``` # 2.1.11 Filter Design Using the Helper Modules The Scipy package *signal* assists with the design of many digital filter types. As an alternative, here we explore the use of the filter design modules found in scikit-dsp-comm (https://github.com/mwickert/scikit-dsp-comm). In this note we briefly explore the use of sk_dsp_comm.fir_design_helper and sk_dsp_comm. iir_design_helper. In the examples that follow we assume the import of these modules is made as follows: ``` import sk_dsp_comm.fir_design_helper as fir_d import sk_dsp_comm.iir_design_helper as iir_d ``` The functions in these modules provide an easier and more consistent interface for both finte impulse response (FIR) (linear phase) and infinite impulse response (IIR) classical designs. Functions inside these modules *wrap* scipy. signal functions and also incorporate new functionality. # 2.1.12 Design From Amplitude Response Requirements With both fir_design_helper and iir_design_helper a design starts with amplitude response requirements, that is the filter passband critical frequencies, stopband critical frequencies, passband ripple, and stopband attenuation. The number of taps/coefficients (FIR case) or the filter order (IIR case) needed to meet these requirements is then determined and the filter coefficients are returned as an ndarray b for FIR, and for IIR both b and a arrays, and a second-order sections sos 2D array, with the rows containing the corresponding cascade of second-order sections toplogy for IIR filters. For the FIR case we have in the z-domain $$H_{\rm FIR}(z) = \sum_{k=0}^{N} b_k z^{-k}$$ with ndarray $b = [b_0, b_1, \dots, b_N]$. For the IIR case we have in the z-domain $$H_{\text{IIR}}(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=1}^{N} a_k z^{-k}}$$ $$= \prod_{k=0}^{N_s - 1} \frac{b_{k0} + b_{k1} z^{-1} + b_{k2} z^{-2}}{1 + a_{k1} z^{-1} + a_{k2} z^{-2}} = \prod_{k=0}^{N_s - 1} E_k 39$$ (2.38) where $N_s = \lfloor (N+1)/2 \rfloor$. For the b/a form the coefficients are arranged as ``` b = [b0, b1, ..., bM-1], the numerator filter coefficients a = [a0, a1, ..., aN-1], the denominator filter ceofficients ``` For the sos form each row of the 2D sos array corresponds to the coefficients of $H_k(z)$, as follows: # 2.1.13 Linear Phase FIR Filter Design The primary focus of this module is adding the ability to design linear phase FIR filters from user friendly amplitude response requirements. Most digital filter design is motivated by the desire to approach an ideal filter. Recall an ideal filter will pass signals of a certain of frequencies and block others. For both analog and digital filters the designer can choose from a variety of approximation techniques. For digital filters the approximation techniques fall into the categories of IIR or FIR. In the design of FIR filters two popular techniques are truncating the ideal filter impulse response and applying a window, and optimum equiripple approximations Oppenheim2010. Frequency sampling based approaches are also popular, but will not be considered here, even though scipy.signal supports all three. Filter design generally begins with a specification of the desired frequency response. The filter frequency response may be stated in several ways, but amplitude response is the most common, e.g., state how $H_c(j\Omega)$ or $H(e^{j\omega}) = H(e^{j2\pi f/f_s})$ should behave. A completed design consists of the number of coefficients (taps) required and the coefficients themselves (double precision float or float 64 in Numpy, and float 64_t in C). Figure 1, below, shows amplitude response requirements in terms of filter gain and critical frequencies for lowpass, highpass, bandpass, and bandstop filters. The critical frequencies are given here in terms of analog requirements in Hz. The sampling frequency is assumed to be in Hz. The passband ripple and stopband attenuation values are in dB. Note in dB terms attenuation is the negative of gain, e.g., -60 of stopband gain is equivalent to 60 dB of stopband attenuation. There are 10 filter design functions and one plotting function available in fir_design_helper.py. Four functions for designing Kaiser window based FIR filters and four functions for designing equiripple based FIR filters. Of the eight just described, they all take in amplitude response requirements and return a coefficients array. Two of the 10 filter functions are simply wrappers around the scipy.signal function signal.firwin() for designing filters of a specific order when one (lowpass) or two (bandpass) critical frequencies are given. The wrapper functions fix the window type to the firwin default of hann (hanning). The remamining eight are described below in Table 1. The plotting function provides an easy means to compare the resulting frequency response of one or more designs on a single plot. Display modes allow gain in dB, phase in radians, group delay in samples, and group delay in seconds for a given sampling rate. This function, $freq_resp_list()$, works for both FIR and IIR designs. Table 1 provides the interface details to the eight design functions where d_stop and d_pass are positive dB values and the critical frequencies have the same unit as the sampling frequency f_s . These functions do not create perfect results so some tuning of of the design parameters may be needed, in addition to bumping the filter order up or down via N_bump. [4]: Image('300ppi/FIR_Kaiser_Equiripple_Table@300ppi.png',width='80%') [4]: **Table 1:** FIR filter design functions in fir_design_helper.py. | Type | FIR Filter Design Functions | |------------------------------|---| | Kasier Wi | ndow | | Lowpass | h_FIR = firwin_kaiser_lpf(f_pass, f_stop, d_stop, fs = 1.0, N_bump=0) | | Highpass | h_FIR = firwin_kaiser_hpf(f_stop, f_pass, d_stop, fs = 1.0, N_bump=0) | | Bandpass | <pre>h_FIR = firwin_kaiser_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop,</pre> | | Bandstop | h_FIR = firwin_kaiser_bsf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs = 1.0, N_bump=0) | | Equiripple | Approximation | | Lowpass | <pre>h_FIR = fir_remez_lpf(f_pass, f_stop, d_pass, d_stop, fs = 1.0,</pre> | | Highpass | h_FIR = fir_remez_hpf(f_stop, f_pass, d_pass, d_stop, fs = 1.0, N_bump=5) | | Bandpass | <pre>h_FIR = fir_remez_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_pass,</pre> | | Bandstop | h_FIR = fir_remez_bsf(f_pass1, f_stop1, f_stop2, f_pass2, d_pass, d_stop, fs = 1.0, N_bump=5) | | Support F | unction: Compare Designs | | Plot a
List of
Designs | <pre>freqz_resp_list([b],a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)) where [b] is a list coefficient arrays and mode can be: 'dB', 'phase' in radians, 'groupdelay_s' in samples or 'groupdelay_t' in seconds</pre> | ## **Design Examples** ## Example 1: Lowpass with $f_s=1~{\rm Hz}$ For this 31 tap filter we choose the cutoff frequency to be $F_c = F_s/8$, or in normalized form $f_c = 1/8$. ``` [5]: b_k = fir_d.firwin_kaiser_lpf(1/8, 1/6, 50, 1.0) b_r = fir_d.fir_remez_lpf(1/8, 1/6, 0.2, 50, 1.0) [6]: fir_d.freqz_resp_list([b_k,b_r],[[1],[1]],'dB',fs=1) ylim([-80, 5]) title (r'Kaiser vs Equal Ripple Lowpass') ylabel(r'Filter Gain (dB)') xlabel(r'Frequency in kHz') legend((r'Kaiser: %d taps' % len(b_k),r'Remez: %d taps' % len(b_r)),loc='best') grid(); [7]: b_k_p = fir_d.firwin_kaiser_hpf(1/8,1/6,50,1.0) b_r_hp = fir_d.fir_remez_hpf(1/8,1/6,0.2,50,1.0) [8]: fir_d.freqz_resp_list([b_k_hp,b_r_hp],[[1],[1]],'dB',fs=1) ylim([-80, 5]) title(r'Kaiser vs Equal Ripple Lowpass') ylabel(r'Filter Gain (dB)') xlabel(r'Frequency in kHz') legend((r'Kaiser: %d taps' % len(b_k),r'Remez: %d taps' % len(b_r)),loc='best') grid(); [9]: b_k_bp = fir_d.firwin_kaiser_bpf(7000,8000,14000,15000,50,48000) b_r_bp = fir_d.fir_remez_bpf(7000,8000,14000,15000,0.2,50,48000) [10]: fir_d.freqz_resp_list([b_k_bp,b_r_bp],[[1],[1]],'dB',fs=48) ylim([-80, 5]) title(r'Kaiser vs Equal Ripple Bandpass') ylabel(r'Filter Gain (dB)') xlabel(r'Frequency in kHz') legend((r'Kaiser: %d taps' % len(b_k_bp), r'Remez: %d taps' % len(b_r_bp)), loc='lower right') grid(); ``` ### A Design Example Useful for Interpolation or Decimation Here we consider a lowpass design that needs to
pass frequencies from [0, 4000] Hz with a sampling rate of 96000 Hz. This scenario arises when building an interpolator using the classes of the <code>scikit-dps-comm</code> module multirate_helper.py to increase the sampling rate from 8000 Hz to 96000 Hz, or an interpolation factor of L=12. Note at the top of this notebook we have also have the import ``` import sk_dsp_comm.multirate_helper as mrh ``` so that some of the functionality can be accessed. For more details on the use of multirate_helper see. Start with an equalripple design having transition band centered on 4000 Hz with passband ripple of 0.5 dB and stopband attenuation of 60 dB. ``` [11]: b_up = fir_d.fir_remez_lpf(3300, 4300, 0.5, 60, 96000) [12]: mr_up = mrh.multirate_FIR(b_up) ``` • Consider the pole-zero configuration for this high-order filter ``` [13]: # Take a look at the pole-zero configuration of this very # high-order (many taps) linear phase FIR mr_up.zplane() ``` · Check out the passband and stopband gains ``` [14]: # Verify the passband and stopband gains are as expected mr_up.freq_resp('db',96000) ``` • See that the group delay is the expected value of $(N_{\text{taps}} - 1)/2 = 98$ samples ``` [15]: (len(b_up-1))/2 [15]: 98.0 [16]: # Verify that the FIR design has constant group delay (N_taps - 1)/2 samples mr_up.freq_resp('groupdelay_s',96000,[0,100]) ``` The object mr_up can now be used for interpolation or decimation with a rate change factor of 12. # 2.1.14 Traditional IIR Filter Design using the Bilinear Transform The scipy.signal package fully supports the design of IIR digital filters from analog prototypes. IIR filters like FIR filters, are typically designed with amplitude response requirements in mind. A collection of design functions are available directly from <code>scipy.signal</code> for this purpose, in particular the function <code>scipy.signal.iirdesign()</code>. To make the design of lowpass, highpass, bandpass, and bandstop filters consistent with the module <code>fir_design_helper.py</code> the module <code>iir_design_helper.py</code> was written. Figure 2, below, details how the amplitude response parameters are defined graphically. ``` [17]: Image('300ppi/IIR_Lowpass_Highpass_Bandpass_Bandstop@300ppi.png',width='90%') ``` Within iir_design_helper.py there are four filter design functions and a collection of supporting functions available. The four filter design functions are used for designing lowpass, highpass, bandpass, and bandstop filters, utilizing Butterworth, Chebshev type 1, Chebyshev type 2, and elliptical filter prototypes. See Oppenheim2010 and ECE 5650 notes Chapter 9 for detailed design information. The function interfaces are described in Table 2. [18]: Image('300ppi/IIR_Table@300ppi.png', width='80%') [18]: **Table 2:** IIR filter design functions in iir_design_helper.py and key support functions. | Type | IIR Filter Design Functions* | |------------------------|--| | Transfer F | Function (b,a) and SOS | | Lowpass (bilinear) | b, a, sos = IIR_lpf(f_pass, f_stop, Ripple_pass, Atten_stop, fs = 1.00, ftype = 'butter') ftype may be 'butter', 'butter'cheby1', 'cheby2', or 'elliptic' | | Highpass
(bilinear) | <pre>b, a, sos = IIR_hpf(f_stop, f_pass, Ripple_pass, Atten_stop,</pre> | | Bandpass
(bilinear) | b, a, sos = IIR_bpf(f_stop1, f_pass1, f_pass2, f_stop2, Ripple_pass, Atten_stop, fs = 1.00, ftype = 'butter') ftype may be 'butter', 'butter'cheby1', 'cheby2', or 'elliptic' | | Bandstop
(bilinear) | b, a, sos = IIR_bsf(f_pass1, f_stop1, f_stop2, f_pass2, Ripple_pass, Atten_stop, fs = 1.00, ftype = 'butter') ftype may be 'butter', 'butter'cheby1', 'cheby2', or 'elliptic' | | Support F | unctions | | SOS list
plot | <pre>freqz_resp_cas_list([sos],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)) where: [sos] is a list coefficient arrays and mode can be: 'dB', 'phase' in radians, 'groupdelay_s' in samples or 'groupdelay_t' in seconds</pre> | | SOS
freqz | w, Hcas = freqz_cas(sos,w) freqz for a single sos section | | SOS plot
pole-zero | sos_zplane(sos,auto_scale=True,size=2,tol = 0.001) More accurate root factoring results in a more accurate pole-zero plot. | | Cascade
SOS | sos = sos_cascade(sos1,sos2) Create a new sos by cascading sos1 with sos2 | order. The filter functions return the filter coefficients in two formats: - 1. Traditional transfer function form as numerator coefficients b and denominator a coefficients arrays, and - 2. Cascade of biquadratic sections form using the previously introduced sos 2D array or matrix. Both are provided to allow further analysis with either a direct form topology or the sos form. The underlying signal.iirdesign() function also provides a third option: a list of poles and zeros. The sos form desireable for high precision filters, as it is more robust to coefficient quantization, in spite using double precision coefficients in the b and a arrays. Of the remaining support functions four are also described in Table 2, above. The most significant functions are freqz resp cas list, available for graphically comparing the frequency response over several designs, and sos zplane a function for plotting the pole-zero pattern. Both operate using the sos matrix. A transfer function form (b/a) for frequency response plotting, freqz resp list, is also present in the module. This function was first introduced in the FIR design section. The frequency response function plotting offers modes for gain in dB, phase in radians, group delay in samples, and group delay in seconds, all for a given sampling rate in Hz. The polezero plotting function locates pole and zeros more accurately than sk_dsp_commsiqsys.zplane, as the numpy function roots () is only solving quadratic polynomials. Also, repeated roots can be displayed as theoretically expected, and also so noted in the graphical display by superscripts next to the pole and zero markers. # **IIR Design Based on the Bilinear Transformation** There are multiple ways of designing IIR filters based on amplitude response requirements. When the desire is to have the filter approximation follow an analog prototype such as Butterworth, Chebychev, etc., is using the bilinear transformation. The function signal.iirdesign() described above does exactly this. In the example below we consider lowpass amplitude response requirements and see how the filter order changes when we choose different analog prototypes. # **Example: Lowpass Design Comparison** The lowpass amplitude response requirements given $f_s=48~{\rm kHz}$ are: 1. $f_{\rm pass}=5~{\rm kHz}$ 2. $f_{\rm stop}=8~{\rm kHz}$ 3. Passband ripple of 0.5 dB 4. Stopband attenuation of 60 dB Design four filters to meet the same requirements: butter, cheby1, ,cheby2, and ellip: ``` [19]: fs = 48000 f_pass = 5000 f_stop = 8000 b_but,a_but,sos_but = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter') b_cheb1,a_cheb1,sos_cheb1 = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1') b_cheb2,a_cheb2,sos_cheb2 = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2') b_elli,a_elli,sos_elli = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip') ``` #### **Frequency Response Comparison** Here we compare the magnitude response in dB using the sos form of each filter as the input. The elliptic is the most efficient, and actually over achieves by reaching the stopband requirement at less than 8 kHz. Next plot the pole-zero configuration of just the butterworth design. Here we use the a special version of ss.zplane that works with the sos 2D array. ``` [21]: iir_d.sos_zplane(sos_but) [21]: (15, 15) ``` Note the two plots above can also be obtained using the transfer function form via iir_d. freqz_resp_list([b],[a],'dB',fs=48) and ss.zplane(b,a), respectively. The sos form will yield more accurate results, as it is less sensitive to coefficient quantization. This is particularly true for the pole-zero plot, as rooting a 15th degree polynomial is far more subject to errors than rooting a simple quadratic. For the 15th-order Butterworth the bilinear transformation maps the expected 15 s-domain zeros at infinity to z=-1. If you use $sk_dsp_comm.sigsys.zplane()$ you will find that the 15 zeros at are in a tight circle around z=-1, indicating polynomial rooting errors. Likewise the frequency response will be more accurate. Signal filtering of ndarray x is done using the filter designs is done using functions from scipy.signal: - 1. For transfer function form y = signal.lfilter(b, a, x) - 2. For sos form y = signal.sosfilt(sos, x) ## A Half-Band Filter Design to Pass up to W/2 when $f_s=8$ kHz Here we consider a lowpass design that needs to pass frequencies up to $f_s/4$. Specifically when $f_s=8000$ Hz, the filter passband becomes [0, 2000] Hz. Once the coefficients are found a mrh.multirate object is created to allow further study of the filter, and ultimately implement filtering of a white noise signal. Start with an elliptical design having transition band centered on 2000 Hz with passband ripple of 0.5 dB and stopband attenuation of 80 dB. The transition bandwidth is set to 100 Hz, with 50 Hz on either side of 2000 Hz. ``` [22]: # Elliptic IIR Lowpass b_lp,a_lp,sos_lp = iir_d.IIR_lpf(1950,2050,0.5,80,8000.,'ellip') mr_lp = mrh.multirate_IIR(sos_lp) ``` Pass Gaussian white noise of variance $\sigma_x^2 = 1$ through the filter. Use a lot of samples so the spectral estimate can accurately form $S_y(f) = \sigma_x^2 \cdot |H(e^{j2\pi f/f_s})|^2 = |H(e^{j2\pi f/f_s})|^2$. ``` [24]: x = randn(1000000) y = mr_lp.filter(x) psd(x,2**10,8000); psd(y,2**10,8000); title(r'Filtering White Noise Having $\sigma_x^2 = 1$') legend(('Input PSD','Output PSD'),loc='best') ylim([-130,-30]) [24]: (-130.0, -30.0) ``` ``` [25]: fs = 8000 print('Expected PSD of %2.3f dB/Hz' % (0-10*log10(fs),)) Expected PSD of -39.031
dB/Hz ``` ### **Amplitude Response Bandpass Design** [23]: mr_lp.freq_resp('db',8000) Here we consider FIR and IIR bandpass designs for use in an SSB demodulator to remove potential adjacent channel signals sitting either side of a frequency band running from 23 kHz to 24 kHz. ``` [26]: b_rec_bpf1 = fir_d.fir_remez_bpf(23000,24000,28000,29000,0.5,70,96000,8) fir_d.freqz_resp_list([b_rec_bpf1],[1],mode='dB',fs=96000) ylim([-80, 5]) grid(); ``` The group delay is flat (constant) by virture of the design having linear phase. ``` [27]: b_rec_bpf1 = fir_d.fir_remez_bpf(23000,24000,28000,29000,0.5,70,96000,8) fir_d.freqz_resp_list([b_rec_bpf1],[1],mode='groupdelay_s',fs=96000) grid(); ``` Compare the FIR design with an elliptical design: This high order elliptic has a nice tight amplitude response for minimal coefficients, but the group delay is terrible: ``` [1]: %pylab inline import sk_dsp_comm.sigsys as ss import sk_dsp_comm.fir_design_helper as fir_d import sk_dsp_comm.iir_design_helper as iir_d import sk_dsp_comm.multirate_helper as mrh import scipy.signal as signal from IPython.display import Audio, display from IPython.display import Image, SVG Populating the interactive namespace from numpy and matplotlib ``` ``` [2]: %config InlineBackend.figure_formats=['svg'] # SVG inline viewing ``` # 2.1.15 Multirate Signal Processing Using multirate_helper In this section the classes multirate_FIR and multirate_IIR, found in the module sk_dsp_comm. multirate_helper, are discussed with the aim of seeing how they can be used to filter, interpolate (upsample and filter), and decimate (filter and downsample) discrete time signals. Fundamentally the processing consists of two elements: (1) and upsampler or downsampler and (2) a lowpass filter. Fundamentally this modules provides classes to change the sampling rate by an integer factor, either up, *interpolation* or down, *decimation*, with integrated filtering to supress spectral images or aliases, respectively. The top level block diagram of the interpolator and decimator are given in the following two figures. The frequencies given in the figures assume that the interpolator is rate chainging from 8 ksps to 96 ksps (L=12) and the decimator is rate changing from 96 ksps to 8 ksps (M=12). This is for example purposes only. The FIR/IIR filter cutoff frequency will in general be $f_c=f_{\rm s,out}/(2L)$ for the decimator and $f_c=f_{\rm s,in}/(2M)$. The primitives to implement the classes are available in sk_dsp_comm.sigsys and scipy.signal. ``` [3]: Image('300ppi/Interpolator_Top_Level@300ppi.png',width='60%') ``` The upsample block, shown above with arrow pointing up and integer L=12 next to the arrow, takes the input sequence and produces the output sequence by inserting L-1 (as shown here 11) zero samples between each input sample. The downsample block, shown above with arrow pointing down and integer M=12 next to the arrow, takes the input sequence and retains at the output sequence every Mth (as shown here 12th) sample. The impact of these blocks in the frequency domain is a little harder to explain. In words, the spectrum at the output of the upsampler is compressed by the factor L, such that it will contain L spectral images, including the fundamental image centered at f=0, evenly spaced up to the sampling f_s . Overall the spectrum of $x_{\rm up}[n]$ is of course periodic with respect to the sampling rate. The lowpass filter interpolates signal sample values from the non-zero samples where the zero samples reside. It is this interpolation that effectively removed or suppresses the spectral images outside the interval $|f| > f_s/(2L)$. For the downsampler the input spectrum is stretched along the frequency axis by the factor M, with aliasing from frequency bands outside $|f| < f_s/(2M)$. To avoid aliasing the lowpass filter blocks input signals for $f > f_s/(2M)$. To get started using the module you will need an import similar to: ``` import sk_dsp_comm.multirate_helper as mrh ``` ## The rate_change Class We start with the description of a third class, mrh.rate_change, which is simplistic, offering little user interaction, but automatically designs the required lowpass filter you see in the above block diagrams. Below is a table which describes this class: [5]: Image('300ppi/Multirate_Table1@300ppi.png', width='85%') [5]: **Table 1:** Classes and functions in multirate_helper.py. | <pre>dule class: multirate_helper.rate_change struc-</pre> | | |---|------| | | | | fcutoff is normalized to the sampling rate, e.g., fs_out/M_change for inte lation and fs_in/M_change for decimation. ftype may also be 'cheby1' where the ripple is fixed at 0.05 dB. | rpo- | | $x[n] \xrightarrow{\qquad \qquad } y = \text{rc_obj.up(x)}$ $x[n] \xrightarrow{\qquad \qquad } y[n]$ $fs_in \qquad \qquad fcutoff = fs_out = fs_in*M_change$ | | | imate $y = rc_obj.dn(x)$ $x[n] \xrightarrow{\text{Filter}} y[n]$ $fs_in \xrightarrow{\text{fs_iin} \text{-fcutoff} = fs_in/M_change}} fs_in/M_change$ | | This class is used in the analog modulation demos for the ECE 4625/5625 Chapter 3 Jupyter notebook. Using this class you can quickly create a interpolation or decimation block with the necessary lowpass filter automatically designed and implemented. Fine tuning of the filter is limited to choosing the filter order and the cutoff frequency as a fraction of the signal bandwidth given the rate change integer, L or M. The filter type is also limited to Butterworth or Chebyshev type 1 having passband ripple of 0.05 dB. ## A Simple Example Pass a sinusoidal signal through an L=4 interpolator. Verify that spectral images occur with the use of the interpolation lowpass filter. ``` [6]: fs_in = 8000 M = 4 fs_out = M*fs_in rc1 = mrh.rate_change(M) # Rate change by 4 n = arange(0, 1000) x = cos(2*pi*1000/fs_in*n) x_up = ss.upsample(x, 4) y = rc1.up(x) ``` ### **Time Domain** ``` [7]: subplot(211) stem(n[500:550], x_up[500:550]); ylabel(r'$x_{up}[n]$') title(r'Upsample by $L=4$ Output') #ylim(-100, -10) subplot(212) stem(n[500:550], y[500:550]); ylabel(r'$y[n]$') xlabel(r'') title(r'Interpolate by $L=4$ Output') #ylim(-100, -10) tight_layout() ``` Clearly the lowpass interpolation filter has done a good job of filling in values for the zero samples ## **Frequency Domain** ``` [8]: subplot(211) psd(x_up, 2**10, fs_out); ylabel(r'PSD (dB)') title(r'Upsample by $L=4$ Output') ylim(-100, -10) subplot(212) psd(y, 2**10, fs_out); ylabel(r'PSD (dB)') title(r'Interpolate by $L=4$ Output') ylim(-100, -10) tight_layout() ``` • The filtering action of the LPF does its best to suppress the images at 7000, 9000, and 15000 Hz. ### The multirate_FIR Class With this class you implement an object that can filter, interpolate, or decimate a signal. Additionally support methods drill into the characteristics of the lowpass filter at the heart of the processing block. To use this class the user must supply FIR filter coefficients that implement a lowpass filter with cutoff frequency appropriate for the desired interpolation of decimation factor. The module sk_dsp_com.FIR_design_helper is capable of delivering the need filter coefficients array. See FIR design helper notes for multirate filter design examples. With FIR coefficients in hand it is an easy matter to create an multirate FIR object capable of filtering, interpolation, or decimation. The details of the class interface are given in Table 2 below. ``` [9]: Image('300ppi/Multirate_Table2@300ppi.png',width='85%') ``` [9]: Table 2: Classes and functions in multirate_helper.py (cont.). | Type | Class/Method/Function | |------------------|--| | module c | lass: multirate_helper.multirate_FIR | | construc-
tor | <pre>mr_obj = multirate_FIR(b) b : user supplied FIR filter that meets the desired filtering, interpolation, or decimation needs; nominally design filter for fc = (fs/2)/M_change</pre> | | filter | $y = mr_obj.filter(x)$ $x[n] \longrightarrow Filter b$ $fs_in \longrightarrow fs_out = fs_in$ $fs_out = fs_in$ | | | | | interpo-
late | $y = up(x, L_change = 12)$ $x[n] \xrightarrow{filter} y[n]$ $fs_in \xrightarrow{fs_out} fs_out = fs_in*M_change$ | | decimate | $y = dn(x,M_change = 12)$ | | | x[n] f f f f f f f | | plot H | <pre>mr_obj.freq_resp(mode = 'dB', fs = 8000, ylim = [-100,2]) mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz</pre> | | plot PZ | mr_obj.zplane(auto_scale=True,size=2,detect_mult=True,tol=0.001) | | function: | • | | plot H | <pre>freqz_resp(b,a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)) mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz</pre> | Notice that the class also provides a means to obtain frequency response plots and pole-zero plots directly from the instantiated multirate objects. ## **FIR Interpolator Design Example** Here we take the earlier lowpass filter designed to interpolate a signal being upsampled from $f_{s1}=8000$ kHz to $f_{s2}=96$ kHz. The upsampling factor is $L=f_{s2}/f_{s1}=12$. The ideal interpolation filter should cutoff at $f_{s1}/2=f_{s2}/(2\cdot 12)=8000/2=4000$ Hz. Recall the upsampler (y = ss.upsampler (x, L)) inserts L-1 samples between each input sample. In the frequency domain the zero insertion replicates the input spectrum on $[0,f_{s1}/2]$ L times over the interval $[0,f_{s2}]$ (equivalently L/2 times on the interval $[0f_{s2}/2]$. The lowpass interpolation filter serves to removes the images above $f_{s2}/(2L)$ in the frequency domain and in so doing filling in
the zeros samples with waveform interpolants in the time domain. As an input consider a sinusoid at 1 kHz and observe the interpolator output spectrum compared with the input spectrum. ``` [11]: # Sinusoidal test signal n = arange(10000) x = cos(2*pi*1000/8000*n) # Interpolate by 12 (upsample by 12 followed by lowpass filter) y = mrh_up.up(x,12) ``` ``` [12]: # Plot the results subplot(211) psd(x,2**12,8000); title(r'1 KHz Sinusoid Input to $L=12$ Interpolator') ylabel(r'PSD (dB)') ylim([-100,0]) subplot(212) psd(y,2**12,12*8000) title(r'1 KHz Sinusoid Output from $L=12$ Interpolator') ylabel(r'PSD (dB)') ylim([-100,0]) tight_layout() ``` In the above spectrum plots notice that images of the input 1 kHz sinusoid are down $\simeq 60$ dB, which is precisely the stop band attenuation provided by the interpolation filter. The variation is due to the stopband ripple. # The multirate_IIR Class With this class, as with multirate_FIR you implement an object that can filter, interpolate, or decimate a signal. The filter in this case is a user supplied IIR filter in second-order sections (sos) form. Additionally support methods drill into the characteristics of the lowpass filter at the heart of the procssing block. The module sk_dsp_com. IIR_design_helper is capable of delivering the need filter coefficients array. See IIR design helper notes for multirate filter design examples. With IIR coefficients in hand it is an easy matter to create an multirate IIR object capable of filtering, interpolation, or decimation. The details of the class interface are given in Table 3 below. [13]: Image('300ppi/Multirate_Table3@300ppi.png', width='85%') [13]: Table 3: Classes and functions in multirate_helper.py (cont.). | Type | Class/Method/Function | | |---------------------|--|--| | nodule c | lass: multirate_helper.multirate_IIR | | | construc-
tor | <pre>mr_obj = multirate_IIR(sos) b : user supplied IIR filter that meets the desired filtering, interpolation, or decimation needs; nominally design filter for fc = (fs/2)/M_change</pre> | | | filter | $y = mr_obj.filter(x)$ $x[n] \xrightarrow{\text{Filter sos}} y[n]$ $fs_in \xrightarrow{\text{fs}_in = fs_out} fs_out = fs_in$ | | | interpo-
late | $y = up(x, L_change = 12)$ $x[n] \xrightarrow{fs_in} fs_in \xrightarrow{fs_out} fs_out = fs_in*M_change$ | | | decimate | $y = dn(x,M_change = 12)$ $x[n] \xrightarrow{\text{Filter sos}} y[n]$ $fs_in \xrightarrow{\text{fs}_in} fs_out = fs_in/M$ | | | plot H | <pre>mr_obj.freq_resp(mode= 'dB', fs = 8000, ylim = [-100,2]) mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz</pre> | | | plot PZ | mr_obj.zplane(auto_scale=True,size=2,detect_mult=True,tol=0.001) | | | module fu | nction: | | | plot H
from b, a | <pre>freqz_resp(b,a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)) mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz</pre> | | ## **IIR Decimator Design Example** Whan a signal is decimated the signal is first lowpass filtered then downsampled. The lowpass filter serves to prevent aliasing as the sampling rate is reduced. Downsampling by M (y = ss.downsample(x, M)) removes M-1 sampling for every M sampling input or equivalently retains one sample out of M. The lowpass prefilter has cutoff frequency equal to the folding frequency of the output sampling rate, i.e., $f_c = f_{s2}/2$. Note avoid confusion with the project requirements, where the decimator is needed to take a rate f_{s2} signal back to f_{s1} , let the input sampling rate be $f_{s2} = 96000$ Hz and the output sampling rate be $f_{s1} = 8000$ Hz. The input sampling rate is M times the output rate, i.e., $f_{s2} = Mf_{s1}$, so you design the lowpass filter to have cutoff $f_c = f_{s2}/(2 \cdot L)$. **ECE 5625 Important Observation**: In the coherent SSB demodulator of Project 1, the decimator can be conveniently integrated with the lowpass filter that serves to remove the double frequency term. In the example that follows a Chebyshev type 1 lowpass filter is designed to have cutoff around 4000 Hz. A sinusoid is used as a test input signal at sampling rate 96000 Hz. ``` [14]: # Design the filter core for a decimator used in changing the # sampling rate from 96000 Hz to 8000 Hz b_dn, a_dn, sos_dn = iir_d.IIR_lpf(3300,4300,0.5,60,96000,'cheby1') # Create the multirate object mrh_dn = mrh.multirate_IIR(sos_dn) mrh_dn.freq_resp('dB',96000) title(r'Decimation Filter Frequency Response - Magnitude'); [14]: Text(0.5, 1.0, 'Decimation Filter Frequency Response - Magnitude') ``` • Note the Chebyshev lowpass filter design above is very efficient compared with the 196-tap FIR lowpass designed for use in the interpolator. It is perhaps a better overall choice. The FIR has linear phase and the IIR filter does not, but for the project this is not really an issue. As an input consider a sinusoid at 1 kHz and observe the interpolator output spectrum compared with the input spectrum. ``` [15]: # Sinusoidal test signal n = arange(100000) x = cos(2*pi*1000/96000*n) # Decimate by 12 (lowpass filter followed by downsample by 12) y = mrh_dn.dn(x,12) ``` ``` [16]: # Plot the results subplot(211) psd(x,2**12,96000); title(r'1 KHz Sinusoid Input to $M=12$ Decimator') ylabel(r'PSD (dB)') ylim([-100,0]) subplot(212) psd(y,2**12,8000) title(r'1 KHz Sinusoid Output from $M=12$ Decimator') ylabel(r'PSD (dB)') ylim([-100,0]) tight_layout() ``` ``` [1]: %pylab inline import sk_dsp_comm.sigsys as ss import sk_dsp_comm.pyaudio_helper as pah import sk_dsp_comm.fir_design_helper as fir_d ``` (continues on next page) ``` import scipy.signal as signal import scipy.io as io from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets from IPython.display import Audio, display from IPython.display import Image, SVG Populating the interactive namespace from numpy and matplotlib ``` ``` pylab.rcParams['savefig.dpi'] = 100 # default 72 %config InlineBackend.figure_formats=['svg'] # SVG inline viewing ``` # 2.1.16 Introduction A simplified block diagram of PyAudio *streaming-based* (nonblocking) signal processing when using pyaudio_helper and ipython widgets. #### Available Audio I/O Devices If you add or delete devices by plugging or unplugging USB audio ibterface, this list becomdes invalid. Restart the kernel and run again to get the correct device index list. For two channel apps both the input and output devices must support two channels. For the Sabrent USB audio devices, which has one input and two outputs, Windows for example may improperly list the devices as having two inputs. ``` pah.available_devices() ``` Index 0 device name = Built-in Microph, inputs = 2, outputs = 0 Index 1 device name = Built-in Output, inputs = 0, outputs = 2 # 2.1.17 Real-Time Loop Through Here we set up a simple callback function that passes the input samples directly to the output. The module pyaudio_support provides a class for managing a pyaudio stream object, capturing the samples processed by the callback function, and collection of performance metrics. Once the callback function is written/declared a DSP_io_stream object can be created and then the stream(Tsec) method can be executed to start the input/output processing, e.g., ``` import pyaudio_helper as pah DSP_IO = pah.DSP_io_stream(callback,in_idx, out_idx) DSP_IO.interactive_stream(Tsec = 2, numChan = 1) ``` where in_idx is the index of the chosen input device found using available_devices() and similarly out idx is the index of the chosen output device. • The callback function must be written first as the function name used by the object to call the callback. No globals required here as there is no instrumentation configured, externally defined algorithm coefficients, and no widgets being used. This callback makes use of the instrumentation capabilities of the DSP_io_stream and also has a simple lowpass filter waiting *in-the-wings* if a line of code in commented out and a following line is uncomments, e.g., ``` #y = x # Typically more DSP code here y, zi = signal.lfilter(b,a,x,zi=zi) # for FIR or simple IIR ``` Notice that globals are now used for the DSP_IO object, the filter coefficients in arrays, a and b, and also the filter states held in the array zi. In its present form te filtering is commented out, but can be uncommented to allow a simple 1st-order IIR lowpass filter to operate on one channel of audio streaming through the system. ``` [5]: # Add a simple IIR LPF fs = 48000 # Assummed sampling rate f3 = 1000 # Hz a = [1, -exp(-2*pi*f3/fs)] b = [1 - exp(-2*pi*f3/fs)] zi = signal.lfiltic(b,a,[0]) ``` ``` [6]: # define a pass through, y = x, callback def callback(in_data, frame_length, time_info, status): global DSP_IO, b, a, zi DSP_IO.DSP_callback_tic() # convert byte data to ndarray in_data_nda = np.frombuffer(in_data, dtype=np.int16) # DSP operations here # Here we apply a linear filter to the input x = in_{data}_nda.astype(float32) y = x # Typically more DSP code here \#y, zi = signal.lfilter(b, a, x, zi=zi) \# for FIR or simple IIR # Save data for later analysis # accumulate a new frame of samples DSP_IO.DSP_capture_add_samples(y) # Convert from float back to int16 y = y.astype(int16) DSP_IO.DSP_callback_toc() # Convert ndarray back to bytes #return (in_data_nda.tobytes(), pyaudio.paContinue) return y.tobytes(), pah.pyaudio.paContinue ``` ``` DSP_IO = pah.DSP_io_stream(callback,in_idx=0,out_idx=1,fs=48000,Tcapture=0) ``` Index 0 device name = Built-in Microph, inputs = 2, outputs = 0 Index 1 device name = Built-in Output, inputs = 0, outputs = 2 DSP_IO.interactive_stream(Tsec=0,numChan=1) ``` [7]: Image("audio_files/start_stop_stream.png", width='55%') [7]: Start
Streaming Stop Streaming Status: Stopped ``` With the iMic plugged in the input/output device indices can be reconfigured to use the iMic index for both the input output streams. The Analog Discovery (AD2) is then used to drive a white noise test signal into the ADC and capture the output from the DAC. This allows us to measure the ADC-DAC frequency response using a long-term time average spectral estimate capabilities of the AD2. A second test capture is to use DSP_IO. DSP_capture_add_samples(y) to capture the response of the ADC alone, and perform spectral analysis here in the Jupyter notebook. For this capture we set Tcapture=20s two cells above and Tsec=20 one cell above. A comparison of the ADC-alone and ADC-DAC spectrum normalized to look like the frequency response is done in the cell below. ``` title(r'Loop Through Gain Flatness using iMic at $f_s = 48$ kHz') grid(); ``` The callback stats when capturing data using DSP_IO.DSP_capture_add_samples (y) and a plot of the time domain samples. ``` Nstop = 1000 plot(arange(0,len(DSP_IO.data_capture[:Nstop]))/48000,DSP_IO.data_capture[:Nstop]) DSP_IO.stream_stats() ``` Note for a attributes used in the above examples the frame_length is always 1024 samples and the sampling rate $f_s = 48$ ksps. The ideal callback period is this $$T_{cb} = \frac{1024}{480100} = 21.33 \,(\text{ms})$$ Next consider what the captures tic and toc data revels about the processing. Calling the method cb_active_plot() produces a plot similar to what an electrical engineer would see what using a logic analyzer to show the time spent in an *interrupt service routine* of an *embedded system*. The latency is also evident. You expect to see a minimum latency of two frame lengths (input buffer fill and output buffer fill),e.g., $$T_{\text{latency}} >= 2 \times \frac{1024}{48000} \times 1000 = 42.6 \text{ (ms)}$$ The host processor is multitasking, so the latency can be even greater. A true real-time DSP system would give the signal processing high priority and hence much lower is expected, particularly if the frame_length can be made small. ## **Real-Time Filtering** Here we set up a callback function that filters the input samples and then sends them to the output. ``` import pyaudio_helper as pah DSP_IO = pah.DSP_io_stream(callback,in_idx, out_idx) DSP_IO.interactive_stream(2,1) ``` where in_idx is the index of the chosen input device found using available_devices() and similarly out_idx is the index of the chosen output device. - The callback function must be written first as the function name is used by the object to call the callback - To demonstrate this we first design some filters that can be used in testing ``` [9]: b = fir_d.fir_remez_bpf(2700,3200,4800,5300,.5,50,48000,18) a = [1] fir_d.freqz_resp_list([b],[1],'dB',48000) ylim([-60,5]) grid(); zi = signal.lfiltic(b,a,[0]) ``` (continues on next page) ``` w,H_BPF = signal.freqz(b,1,2*pi*f/48000) plot(f,20*log10(abs(H_BPF))) ylabel(r'Gain (dB)') xlabel(r'Frequency (Hz)') legend((r'AD2 Noise Measured',r'Design Theory')) title(r'4 kHz 182-Tap FIR Bandpass Design at $f_s = 48$ kHz') ylim([-60,5]) xlim([2000,8000]) grid(); ``` ``` [11]: # Design an IIR Notch b, a = ss.fir_iir_notch(2000, 48000, r= 0.9) fir_d.freqz_resp_list([b], [a], 'dB', 48000, 4096) ylim([-60,5]) grid(); zi = signal.lfiltic(b,a,[0]) ``` Create some global variables for the filter coefficients and the filter state array (recall that a filter has memory). ``` [12]: # define callback (#2) def callback2(in_data, frame_count, time_info, status): global DSP_IO, b, a, zi DSP_IO.DSP_callback_tic() # convert byte data to ndarray in_data_nda = np.frombuffer(in_data, dtype=np.int16) # DSP operations here # Here we apply a linear filter to the input x = 5*in_data_nda.astype(float32) #y = x # The filter state/(memory), zi, must be maintained from frame-to-frame # for FIR or simple IIR y, zi = signal.lfilter(b,a,x,zi=zi) # for IIR use second-order sections #y, zi = signal.sosfilt(sos, x, zi=zi) # Save data for later analysis # accumulate a new frame of samples DSP_IO.DSP_capture_add_samples(y) # Convert from float back to int16 y = y.astype(int16) DSP_IO.DSP_callback_toc() return y.tobytes(), pah.pyaudio.paContinue ``` ``` DSP_IO = pah.DSP_io_stream(callback2,2,2,fs=48000,Tcapture=0) ``` ``` DSP_IO.interactive_stream(Tsec=0,numChan=1) ``` ## Playback Only Using an Audio Loop A playback audio loop is created using the pah.loop_audio class filled with samples input from a wav file. In the example below we take a two-channel (stereo) wav file and convert to one channel. ``` [14]: # define callback (3) # Here we configure the callback to play back a wav file def callback3(in_data, frame_count, time_info, status): global DSP_IO, x DSP_IO.DSP_callback_tic() # Ignore in_data when generating output only global x # Note wav is scaled to [-1,1] so need to rescale to int16 y = 32767*x.get_samples(frame_count) # Perform real-time DSP here if desired # Save data for later analysis # accumulate a new frame of samples DSP_IO.DSP_capture_add_samples(y) # Convert from float back to int16 y = y.astype(int16) DSP_IO.DSP_callback_toc() return y.tobytes(), pah.pyaudio.paContinue fs, x_wav2 = ss.from_wav('Music_Test.wav') x_wav = (x_wav2[:,0] + x_wav2[:,1])/2 x = pah.loop_audio(x_wav) DSP_IO = pah.DSP_io_stream(callback3,0,1,fs=44100,Tcapture=2) DSP_IO.interactive_stream(20) # play for 20s but capture only the last 2s [15]: Image("audio_files/start_stop_stream.png", width='55%') [15]: Start Streaming Stop Streaming Status: Stopped Npts = 96000 Nstart = 0 plot(arange(len(DSP_IO.data_capture[Nstart:Nstart+Npts]))*1000/44100, DSP_IO.data_capture[Nstart:Nstart+Npts]/2**(16-1)) title (r'A Portion of the capture buffer') ylabel(r'Normalized Amplitude') ``` ``` 2.1. Jupyter Notebook Examples ``` [16]: Image ("audio_files/music_buffer_plot.png", width="75%") xlabel(r'Time (ms)') grid(); Finally, the spectrum of the output signal. To apply custom scaling we use a variation of psd() found in the sigsys module. If we are plotting the spectrum of *white* noise sent through a filter, the output PSD will be of the form $\sigma_w^2 |H(e^{j2\pi f/f_s})|^2$, where σ_w^2 is the variance of the noise driving the filter. You may choose to overlay a plot of # 2.1.18 Widgets Examples ### Stereo Gain Sliders ``` [18]: # L and Right Gain Sliders def callback(in_data, frame_count, time_info, status): global DSP_IO, L_gain, R_gain DSP_IO.DSP_callback_tic() # convert byte data to ndarray in_data_nda = np.frombuffer(in_data, dtype=np.int16) # separate left and right data (continue on new news) ``` (continues on next page) ``` x_left,x_right = DSP_IO.get_LR(in_data_nda.astype(float32)) # DSP operations here y_left = x_left*L_gain.value y_right = x_right*R_gain.value # Pack left and right data together y = DSP_IO.pack_LR(y_left,y_right) # Typically more DSP code here # Save data for later analysis # accumulate a new frame of samples DSP_IO.DSP_capture_add_samples_stereo(y_left,y_right) # Convert from float back to int16 y = y.astype(int16) DSP_IO.DSP_callback_toc() # Convert ndarray back to bytes #return (in_data_nda.tobytes(), pyaudio.paContinue) return y.tobytes(), pah.pyaudio.paContinue ``` ``` DSP_IO = pah.DSP_io_stream(callback,0,1,fs=48000,Tcapture=0) DSP_IO.interactive_stream(0,2) widgets.HBox([L_gain, R_gain]) ``` # **Cross Panning** ``` [21]: # Panning def callback(in_data, frame_count, time_info, status): global DSP_IO, panning DSP_IO.DSP_callback_tic() # convert byte data to ndarray in_data_nda = np.frombuffer(in_data, dtype=np.int16) # separate left and right data x_left,x_right = DSP_IO.get_LR(in_data_nda.astype(float32)) # DSP operations here y_left = (100-panning.value)/100*x_left + panning.value/100*x_right y_right = panning.value/100*x_left \ + (100-panning.value)/100*x_right #***** # Pack left and right data together y = DSP_IO.pack_LR(y_left,y_right) # Typically more DSP code here # Save data for later analysis # accumulate a new frame of samples DSP_IO.DSP_capture_add_samples_stereo(y_left,y_right) #********** # Convert from float back to int16 y = y.astype(int16) DSP_IO.DSP_callback_toc() # Convert ndarray back to bytes #return (in_data_nda.tobytes(), pyaudio.paContinue) return y.tobytes(), pah.pyaudio.paContinue ``` ## **Three Band Equalizer** Here we consider a three-band equalizer operating on a music loop. Each peaking filter has system function in the z-domain defined by $$H_{pk}(z) = C_{pk} \frac{1 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$ where the filter coefficients are given by $$C_{pk} = \frac{1 + k_q \mu}{1 + k_q}$$ $$k_q = \frac{4}{1 + \mu} \tan \left(\frac{2\pi f_c / f_s}{2Q^{2.4}} \right)$$ $$b_1 = \frac{-2\cos(2\pi f_c / f_s)}{1 + k_q \mu}$$ $$b_2 = \frac{1 - 2k_q \mu}{1 + k_q \mu}$$ $$a_1 = \frac{-2\cos(2\pi f_c / f_s)}{1 + k_q}$$ $$a_2 = \frac{1}{1 + k_q}$$ $$a_2 = \frac{1}{1 + k_q}$$ (2.40) where $$\mu = 10^{G_{\text{dB}}/20}, \ Q \in [2, 10]$$ and and f_c is the center frequency in Hz relative to sampling rate f_s in Hz, and G_{dB} is the peaking filter gain in dB. Conveniently, the function peaking is available in the module sk_dsp_comm.sigsys. ``` [23]: band1 = widgets.FloatSlider(description = '100 Hz', continuous_update = True, # Continuous updates value = 20.0, min = -20.0, max = 20.0, step = 1, orientation = 'vertical') band2 = widgets.FloatSlider(description = '1000 Hz', # Continuous updates continuous_update = True, value = 10.0, min = -20.0, max = 20.0, step = 1, orientation = 'vertical') band3 = widgets.FloatSlider(description = '8000 Hz', continuous_update = True, # Continuous updates value = -10.0, min = -20.0, max = 20.0, step = 1, orientation = 'vertical') Gain = widgets.FloatSlider(description = 'Gain', continuous_update = True, value = 0.2, ``` (continues on next page) ``` min = 0.0, max = 2.0, step = 0.01, orientation = 'vertical') #widgets.HBox([Gain, band1, band2, band3]) ``` ``` [24]: b_bl,a_bl = ss.peaking(band1.value,100,Q=3.5,fs=48000)
zi_bl = signal.lfiltic(b_bl,a_bl,[0]) b_b2,a_b2 = ss.peaking(band2.value,1000,Q=3.5,fs=48000) zi_b2 = signal.lfiltic(b_b2,a_b2,[0]) b_b3,a_b3 = ss.peaking(band3.value,8000,Q=3.5,fs=48000) zi_b3 = signal.lfiltic(b_b3,a_b3,[0]) b_12,a_12 = ss.cascade_filters(b_b1,a_b1,b_b2,a_b2) b_123,a_123 = ss.cascade_filters(b_12,a_12,b_b3,a_b3) f = logspace(log10(50),log10(10000),100) w,H_123 = signal.freqz(b_123,a_123,2*pi*f/48000) semilogx(f,20*log10(abs(H_123))) ylim([-20,20]) ylabel(r'Gain (dB)') xlabel(r'Frequency (Hz)') grid(); ``` ``` [25]: # define a pass through, y = x, callback def callback(in_data, frame_count, time_info, status): global DSP_IO, zi_b1, zi_b2, zi_b3, x global Gain, band1, band2, band3 DSP_IO.DSP_callback_tic() # convert byte data to ndarray in_data_nda = np.frombuffer(in_data, dtype=np.int16) # DSP operations here # Here we apply a linear filter to the input \#x = in_{data_nda.astype}(float32) x = Gain.value*20000*x_loop.get_samples(frame_count) # DSP code here b_b1, a_b1 = ss.peaking(band1.value, 100, Q=3.5, fs=48000) z1, zi_b1 = signal.lfilter(b_b1,a_b1,x,zi=zi_b1) b_b2, a_b2 = ss.peaking(band2.value, 1000, Q=3.5, fs=48000) z2, zi_b2 = signal.lfilter(b_b2,a_b2,z1,zi=zi_b2) b_b3, a_b3 = ss.peaking(band3.value, 8000, Q=3.5, fs=48000) y, zi_b3 = signal.lfilter(b_b3,a_b3,z2,zi=zi_b3) # Save data for later analysis # accumulate a new frame of samples DSP_IO.DSP_capture_add_samples(y) # Convert from float back to int16 y = y.astype(int16) DSP_IO.DSP_callback_toc() # Convert ndarray back to bytes #return (in_data_nda.tobytes(), pyaudio.paContinue) return y.tobytes(), pah.pyaudio.paContinue ``` ``` fs, x_wav2 = ss.from_wav('audio_files/Music_Test.wav') x_wav = (x_wav2[:,0] + x_wav2[:,1])/2 x_loop = pah.loop_audio(x_wav) DSP_IO = pah.DSP_io_stream(callback,0,1,fs=44100,Tcapture=0) DSP_IO.interactive_stream(0,1) widgets.HBox([Gain,band1,band2,band3]) ``` ``` [26]: Image ("audio_files/three_band_widgets.png", width="55%") Start Streaming Stop Streaming Status: Stopped Gain 100 Hz 1000 Hz 8000 Hz 0.73 20.00 10.00 -10.00 ``` []: ``` [1]: # fill namespace with numpy and matplotlib + static notebook plots %pylab inline # fill namespace with numpy and matplotlib + and interactive plots #%pylab notebook #%pylab widget #%matplotlib qt import sk_dsp_comm.sigsys as ss import sk_dsp_comm.digitalcom as dc import sk_dsp_comm.rtlsdr_helper as sdrh import sk_dsp_comm.fir_design_helper as fir_d import sk_dsp_comm.iir_design_helper as iir_d import ipywidgets as widgets import imp # for module reloading import scipy.signal as signal from IPython.display import Audio, display from IPython.display import Image, SVG ``` Populating the interactive namespace from numpy and matplotlib ``` [2]: pylab.rcParams['savefig.dpi'] = 100 # default 72 #pylab.rcParams['figure.figsize'] = (6.0, 4.0) # default (6,4) #%config InlineBackend.figure_formats=['png'] # default for inline viewing %config InlineBackend.figure_formats=['svg'] # SVG inline viewing #%config InlineBackend.figure_formats=['pdf'] # render pdf figs for LaTeX #Image('fname.png', width='80%') ``` ### 2.1.19 RTLSDR Stream Class Now included in the rtlsdr_helper is the RTLSDR_stream class. This class contains async methods for reading IQ data from the rtl_sdr, decimating, and playing back audio. In this notebook only few examples are shown in order to resolve readthedocs rendering issues. The omitted live content is placed in markdown cells as *code fences*. In some cases screen shots of plots and GUI controls are provided. To experiment with live code the user can simply move the code in fences back into code cells. The Python 3.7x asyncio capability is utilized in the software architecture. Being able to function inside the Jupyter event loop is the first hurtle: The top level block diagram of the receiver is shown below: ``` [10]: Image("300ppi/RTLSDR_Streaming_Block@300ppi.png", width="90%") ``` # Mono FM Receiver Example You can use pyaudio helper to find available audio devices ``` [3]: sdrh.pah.available_devices() [3]: {0: {'name': 'Built-in Microphone', 'inputs': 2, 'outputs': 0}, 1: {'name': 'Built-in Output', 'inputs': 0, 'outputs': 2}} [10]: sdr_stream = sdrh.RTLSDR_stream(0,rtl_buffer_size=2**15,audio_out=1) [11]: sdr_stream.interactive_FM_Rx(88.7e6,40,1,2048,48000) Sample Rate: 2400000.0 Gain: 40.2 Output (outputs=({'output_type': 'stream', 'name': 'stdout', 'text': 'Interactive FM, →Receiver'},)) interactive (children=(ToggleButtons (description=' ', index=1, options=('Start... →Streaming', 'Stop Streaming'), s... interactive(children=(FloatSlider(value=0.0, description='Gain (dB)',_ →layout=Layout(width='90%'), max=6.0, min... interactive(children=(FloatSlider(value=88.7, continuous_update=False, description=' \hookrightarrow$f_c\\;$', layout=Layout(w... [12]: sdr_stream.show_logs() Output(outputs=({'output_type': 'stream', 'name': 'stdout', 'text': 'LOGS:\n\ \rightarrowx1b[32mChanging Center Frequency ... [7]: sdr_stream.clear_logs() ``` ``` [8]: sdr_stream.sdr.close() [3]: Image("300ppi/Interactive_FM_Rx@300ppi.png", width="90%") [3]: sdr_stream = sdrh.RTLSDR_stream(0,rtl_buffer_size=2**15,audio_out=3) sdr_stream.interactive_FM_Rx(88.7e6,40,3,2048,48000) Sample Rate: 2400000.0 Center Frequency: 88700000 Gain: 40.2 Interactive FM Receiver Stop Streaming Start Streaming Status: Stopped Gain (dB) -9.3 f_c 88.7 f_c: 88.7 \text{ MHz} sdr_stream.show_logs() Stopping SDR Stopping Audio Starting SDR and Audio Event Loop Stopping SDR Stopping Audio Screen Shot from the Notebook (if not displayable in readthedocs) ``` #### **User-Defined Callbacks** This callback will be called after the initial decimation ``` [9]: def callback(samples, fs, user_var): # Discriminator x = samples X=np.real(x) # X is the real part of the received signal # Y is the imaginary part of the received signal Y=np.imag(x) b=np.array([1, -1]) # filter coefficients for discrete derivative a=np.array([1, 0]) # filter coefficients for discrete derivative derY=signal.lfilter(b,a,Y) # derivative of Y, derX=signal.lfilter(b,a,X) # " z_bb = (X*derY-Y*derX) / (X**2+Y**2) return z_bb,user_var [10]: sdr_stream.run_user_stream(callback, 10, 5) Using default stage 1 decimation filter Using default stage 2 decimation filter Using default stage 1 initial conditions Using default stage 2 initial conditions Starting SDR and Audio Event Loop [12]: sdr_stream.set_audio_gain_db(-20) [16]: sdr_stream.set_fc(88.7e6) ``` ``` Center Frequency: 88700000 [17]: sdr_stream.stop() ``` # 2.1.20 Probing in Time and Frequency Time and frequency domin probing is possible as depicted in the figure below: ### Pulling frames from a stream (continues on next page) ``` psd(processed_stage1_frame, Nfft, 2.4e6/10, 0); stage2_frame = await sdr_stream.get_stage2_frame() Nfft = 2**10 print(len(stage2_frame)) psd(stage2_frame, Nfft, 2.4e6/50, 0); sdr_stream.stop() ``` # **Spectrum Plots** These plots are updated using the matplotlib interactive graphics widget: https://github.com/matplotlib/jupyter-matplotlib. ``` %pylab widget sdr_stream.set_audio_out(3) sdr_stream.run_user_stream(callback, 10, 5) sdr_stream.run_plot_rf_stream(1024,2,w=15,h=6) sdr_stream.set_fc(99.9e6) sdr_stream.set_NFFT(2048) sdr_stream.set_refresh_rate(4) sdr_stream.toggle_invert() sdr_stream.stop_rf_plot() sdr_stream.run_plot_stage1_stream(1024,1,w=15,h=6) sdr_stream.stop_stage1_plot() sdr_stream.run_plot_processed_stage1_stream(1024,1,w=15,h=6) sdr_stream.stop_processed_stage1_plot() sdr_stream.run_plot_stage2_stream(1024,1,w=15,h=6) sdr_stream.set_fc(99.9e6) sdr_stream.set_refresh_rate(4) sdr_stream.stop_stage2_plot() sdr_stream.stop_all() ``` # **Using Widgets** ``` import ipywidgets as widgets ``` ``` []: import ipywidgets as widgets ``` ### **Frequency Slider** ``` freq_slider = widgets.FloatSlider(value=103.9, min=87.5, max=108, step=0.2, description=r'$f_c\;\mathrm{(MHz)}$', continuous_update=True, orientation='horizontal', readout_format='0.1f', layout=widgets.Layout(width='90%',) freq_slider.style.handle_color = 'lightblue' def set_freq_MHz(fc): sdr_stream.set_fc(fc*1e6) sdr_stream.run_user_stream(callback, 10, 5) center_freq_widget = widgets.interactive(set_freq_MHz, fc=freq_slider) display(center_freq_widget) sdr_stream.run_plot_rf_stream(w=15,h=6) sdr_stream.stop_all() ``` #### **Audio Gain Slider** ``` audio_gain_slider = widgets.FloatSlider(value=-3, min=-60, max=6, step=0.1, description=r'Gain (dB)', continuous_update=True, orientation='horizontal', readout_format='0.1f', layout=widgets.Layout(width='90%',)) audio_gain_slider.style.handle_color = 'lightgreen' def set_audio_gain_db(db_gain): ``` (continues on next page) ``` gain = 10**(db_gain/20) sdr_stream.set_audio_gain(gain) audio_gain_widget = widgets.interactive(set_audio_gain_db, db_gain=audio_gain_slider) display(audio_gain_widget) display(center_freq_widget) sdr_stream.run_user_stream(callback, 10, 5) sdr_stream.stop() ``` ### **On/Off Toggle Buttons** ``` def radio_on_off(selection): if(selection == 'On'): def my_callback(samples, fs, user_val): # Discriminator x = samples X=np.real(x) # X is the real part of the received signal # Y is the imaginary part of the received_ Y=np.imag(x) ⇔signal b=np.array([1, -1]) # filter coefficients for discrete derivative a=np.array([1, 0]) # filter coefficients for discrete derivative derY=signal.lfilter(b,a,Y) # derivative of Y, derX=signal.lfilter(b,a,X) # z_bb = (X*derY-Y*derX) / (X**2+Y**2) return z_bb,user_val if (not sdr_stream.keep_streaming): sdr_stream.run_user_stream(my_callback, 10, 5) else: sdr_stream.stop() on_off = widgets.ToggleButtons(options=['On', 'Off'], description = ' ', value = 'Off' on_off.style.button_width = "400px" on_off.style.description_width = "1px" on_off_widget = widgets.interactive(radio_on_off, selection=on_off) display(on_off_widget) display(audio_gain_widget) display(center_freq_widget) ``` # Adjustable Stage 1 Filter ``` stage1_fc = widgets.FloatSlider(value=100, min=2, max=200, step=0.1, description=r'$f_{cS1}
\;\mathrm{(KHz)}$', continuous_update=False, orientation='horizontal', readout_format='0.1f', layout=widgets.Layout(width='90%', stage1_fc.style.handle_color = 'orange' def stage1_fc_change(fc): b = fir_d.firwin_lpf(64,2*fc*1e3,2.4e6) stage1_ic = signal.lfilter_zi(b,1) sdr_stream.set_stage1_coeffs(b, zi=stage1_ic) stage1_fc_widget = widgets.interactive(stage1_fc_change,fc=stage1_fc) display(on_off_widget) display(audio_gain_widget) display(stage1_fc_widget) display(center_freq_widget) sdr_stream.run_plot_stage1_stream(1024,2,w=15,h=6) sdr_stream.stop_stage1_plot() ``` #### Adjustable Stage 2 Filter ``` stage2_fc = widgets.FloatSlider(value=12, min=2, max=20, step=0.1, description=r'$f_{cS2} \;\mathrm{(KHz)}$', continuous_update=False, orientation='horizontal', readout_format='0.1f', layout=widgets.Layout(width='90%',) stage2_fc.style.handle_color = 'purple' def stage2_fc_change(fc): bb = fir_d.firwin_lpf(64,fc*1e3,2.4e6/10) stage2_ic = signal.lfilter_zi(bb,1) sdr_stream.set_stage2_coeffs(bb,zi=stage2_ic) ``` (continues on next page) ``` stage2_fc_widget = widgets.interactive(stage2_fc_change,fc=stage2_fc) display(on_off_widget) display(audio_gain_widget) display(stage1_fc_widget) display(stage2_fc_widget) display(center_freq_widget) sdr_stream.run_plot_stage2_stream(1024,2,w=15,h=6) sdr_stream.stop_stage2_plot() ``` ### **Bypassing Audio** ``` import asyncio sdr_stream.set_rtl_buffer_size(16) def no_audio_callback(samples, fs, user_var): frame_count = user_var user_var = user_var+1 return array([frame_count]),user_var global keep_collecting async def handle_data_out(): global keep_collecting keep_collecting = True while keep_collecting: data_out = await sdr_stream.get_data_out_async() print(data_out) sdr_stream.reset_data_out_queue() print('Done') sdr_stream.run_user_stream(no_audio_callback,1,1,audio_sink=False,user_var=1) task = asyncio.create_task(handle_data_out()) keep_collecting = False sdr_stream.stop() ``` ``` #%matplotlib qt import sk_dsp_comm.sigsys as ss import scipy.signal as signal from IPython.display import Audio, display from IPython.display import Image, SVG Populating the interactive namespace from numpy and matplotlib [2]: pylab.rcParams['savefig.dpi'] = 100 # default 72 #pylab.rcParams['figure.figsize'] = (6.0, 4.0) # default (6,4) #%config InlineBackend.figure_formats=['png'] # default for inline viewing %config InlineBackend.figure_formats=['svg'] # SVG inline viewing #%config InlineBackend.figure_formats=['pdf'] # render pdf figs for LaTeX [3]: import scipy.special as special import sk_dsp_comm.digitalcom as dc import sk_dsp_comm.fec_cony as fec ``` # **Convolutional Coding** ### Rate 1/2 [1]: %pylab inline A convolutional encoder object can be created with the fec.fec_conv method. The rate of the object will be determined by the number of generator polynomials used. Right now, only rate 1/2 and rate 1/3 are supported, so 2 or three generator polynomials can be used. The following table shows ideal rate 1/2 generator polynomials. These are also included in the docstring. Table 1: Weight spectra:math:`c_k` for bounding the codedrate 1/2 BEP. | CL | Polynomials | D_{free} | d_f | d_f+1 | d_f+2 | d_f+3 | d_f+4 | d_f+5 | d_f+6 | d_f+7 | |----|--------------------------------|------------|-------|---------|---------|---------|---------|---------|---------|---------| | 3 | (5,7) = ('101', '111') | 5 | 1 | 4 | 12 | 32 | 80 | 192 | 488 | 1024 | | 4 | (15,17) = ('1101', '1111') | 6 | 2 | 7 | 18 | 49 | 130 | 333 | 836 | 2069 | | 5 | (23,35) = ('10011', '11101') | 7 | 4 | 12 | 20 | 72 | 225 | 500 | 1324 | 3680 | | 6 | (53,75) = ('101011', '111101') | 8 | 2 | 36 | 32 | 62 | 332 | 701 | 2342 | 5503 | | 7 | (133,171) = | 10 | 36 | 0 | 211 | 0 | 1404 | 0 | 11633 | 0 | | | ('1011011','1111001') | | | | | | | | | | In addition to the generator polynomials, you can specify a decision depth for the object. This will determine how many state transitions will be used for the traceback. The following shows how to create a rate 1/2 fec_conv object with contraint length 3 and decision depth 10. ``` [4]: ccl = fec.fec_conv(('111','101'),10) ``` The trellis_plot() method can be used to see the state transitions of the fec_conv object. ### Rate 1/2 Hard Decision Decoding Now, we would like to know the theoretical bit error probability bounds of our convolutional encoding/decoding setup. We can do this using the fec.conv_Pb_bound method. The method takes the rate, degrees of freedom, c_k values, SNR, hard or soft decisions, and order M for an MPSK modulation scheme as arguments. It returns the BEP. The following shows theoretical bounds for rate 1/2 encoding/decoding BPSK system. Compare with Ziemer pg 667. # **Weight Structure Bounds BEP** ``` [6]: SNRdB = arange(0, 12, .1) Pb_uc = fec.conv_Pb_bound(1/2,7,[4, 12, 20, 72, 225],SNRdB,2) Pb_s_half_3_hard = fec.conv_Pb_bound(1/2,5,[1, 4, 12, 32, 80, 192, 448, 1024], SNRdB,0) Pb_s_half_5_hard = fec.conv_Pb_bound(1/2,7,[4, 12, 20, 72, 225, 500, 1324, 3680], \hookrightarrowSNRdB, 0) Pb_s_half_7_hard = fec.conv_Pb_bound(1/2,10,[36, 0, 211, 0, 1404, 0, 11633, 0], SNRdB, Pb_s_half_9_hard = fec.conv_Pb_bound(1/2,12,[33, 0, 281, 0, 2179, 0, 15035, 0], SNRdB, \hookrightarrow 0) figure (figsize=(5,5)) semilogy(SNRdB, Pb_uc) semilogy(SNRdB, Pb_s_half_3_hard, '--') semilogy(SNRdB, Pb_s_half_5_hard, '--') semilogy(SNRdB, Pb_s_half_7_hard, '--') semilogy(SNRdB,Pb s half 9 hard,'--') axis([0,12,1e-7,1e0]) title(r'Hard Decision Rate 1/2 Coding Theory Bounds') xlabel(r'E_b/N_0 (dB)') ylabel(r'Symbol Error Probability') legend(('Uncoded BPSK', 'R=1/2, K=3, Hard', \ 'R=1/2, K=5, Hard', 'R=1/2, K=7, Hard', 'R=1/2, K=9, Hard'), loc='upper right') grid(); ``` ### **BEP Simulation** Now that we can determine our BEP bounds, we can test the actual encoder/decoder using dummy binary data. The following code creates a rate 1/2 fec_conv object. It then generates dummy binary data and encodes the data using the conv_encoder method. This method takes an array of binary values, and an initial state as the input and returns the encoded bits and states. We then adds nois to the encoded data according to the set E_b/N_0 to simulate a noisy channel. The data is then decoded using the viterbi_decoder method. This method takes the array of noisy data and a decision metric. If the hard decision metric is selected, then we expect binary input values from around 0 to around 1. The method then returns the decoded binary values. Then the bit errors are counted. Once at least 100 bit errors are counted, the bit error probability is calculated. ``` [7]: N_bits_per_frame = 10000 EbN0 = 4 total_bit_errors = 0 total_bit_count = 0 cc1 = fec.fec_conv(('11101','10011'),25) # Encode with shift register starting state of '0000' state = '0000' while total_bit_errors < 100:</pre> # Create 100000 random 0/1 bits x = randint(0,2,N_bits_per_frame) y, state = ccl.conv_encoder(x, state) # Add channel noise to bits, include antipodal level shift to [-1,1] yn_soft = dc.cpx_AWGN(2*y-1,EbN0-3,1) # Channel SNR is 3 dB less for rate 1/2 yn_hard = ((sign(yn_soft.real)+1)/2).astype(int) z = ccl.viterbi_decoder(yn_hard, 'hard') # Count bit errors bit_count, bit_errors = dc.bit_errors(x,z) total_bit_errors += bit_errors total_bit_count += bit_count print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total_bit_count, total_bit_errors, \ total_bit_errors/total_bit_count)) print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total_bit_count, total_bit_errors, \ total_bit_errors/total_bit_count)) Bits Received = 9976, Bit errors = 84, BEP = 8.42e-03 Bits Received = 19952, Bit errors = 182, BEP = 9.12e-03 *********** Bits Received = 19952, Bit errors = 182, BEP = 9.12e-03 ``` ``` [8]: y[:100].astype(int) [8]: array([1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0]) ``` The simulated BEP can then be compared to the theoretical bounds that were shown earlier. Some values were simulated for the constraint length 3 and constraint length 5 cases. ``` [9]: SNRdB = arange(0,12,.1) Pb_uc = fec.conv_Pb_bound(1/2,7,[4, 12, 20, 72, 225],SNRdB,2) Pb_s_half_3_hard = fec.conv_Pb_bound(1/2,5,[1, 4, 12, 32, 80, 192, 448, 1024],SNRdB,0) (continues on next page) ``` ``` Pb_s_half_5_hard = fec.conv_Pb_bound(1/2,7,[4, 12, 20, 72, 225, 500, 1324, 3680], \rightarrowSNRdB, 0) Pb_s_half_7_hard = fec.conv_Pb_bound(1/2,10,[36, 0, 211, 0, 1404, 0, 11633, 0], SNRdB, Pb_s_half_9_hard = fec.conv_Pb_bound(1/2,12,[33, 0, 281, 0, 2179, 0, 15035, 0], SNRdB, Pb_s_half_5_hard_sim = array([3.36e-2,1.04e-2,1.39e-3,1.56e-04,1.24e-05]) Pb_s_half_3_hard_sim = array([2.59e-02,1.35e-02,2.71e-03,6.39e-04,9.73e-05,7.71e-06]) figure (figsize=(5,5)) semilogy (SNRdB, Pb_uc) semilogy(SNRdB,Pb_s_half_3_hard,'y--') semilogy(SNRdB,Pb_s_half_5_hard,'g--') semilogy(SNRdB,Pb_s_half_7_hard,'--') semilogy(SNRdB,Pb_s_half_9_hard,'--') semilogy([3,4,5,6,7,8],Pb_s_half_3_hard_sim,'ys') semilogy([3,4,5,6,7],Pb_s_half_5_hard_sim,'gs') axis([0,12,1e-7,1e0]) title (r'Hard Decision Rate 1/2 Coding Measurements') xlabel(r'E_b/N_0 (dB)') ylabel(r'Symbol Error Probability') legend(('Uncoded BPSK', 'R=1/2, K=3, Hard', \ 'R=1/2, K=5, Hard', 'R=1/2, K=7, Hard', 'R=1/2, K=9, Hard', 'R=1/2, K=3, Simulation', \ 'R=1/2, K=5, Simulation'), loc='lower left') grid(); ``` We can look at the surviving paths using the traceback_plot method. ``` [10]: cc1.traceback_plot() ``` # **Soft Decision Decoding BEP Simulation** Soft decision decoding can also be done. In order to simulate the soft decision decoder, we can use the same setup as before, but now we specify 'soft' in the <code>viterbi_decoder</code> method. We also have to pick a quantization level when we do this. If we want 3-bit quantization we would
specify that the quant_level=3. When we use soft decisions we have to scale our noisy received values to values on $[0, 2^n - 1]$. So for a three-bit quantization, we would scale to values on [0, 7]. This helps the system to get better distance metrics for all possible paths in the decoder, thus improving the BEP. The following shows how to simulate soft decisions. ``` [11]: N_bits_per_frame = 10000 EbN0 = 2 total_bit_errors = 0 total_bit_count = 0 cc1 = fec.fec_conv(('11101','10011'),25) # Encode with shift register starting state of '0000' state = '0000' while total_bit_errors < 100: # Create 100000 random 0/1 bits x = randint(0,2,N_bits_per_frame) y,state = cc1.conv_encoder(x,state) # Add channel noise to bits, include antipodal level shift to [-1,1] yn = dc.cpx_AWGN(2*y-1,EbN0-3,1) # Channel SNR is 3dB less for rate 1/2 # Scale & level shift to three-bit quantization levels [0,7]</pre> (continues on next page) ``` ``` yn = (yn.real+1)/2*7 z = cc1.viterbi_decoder(yn.real,'soft',quant_level=3) # Count bit errors bit_count, bit_errors = dc.bit_errors(x,z) total_bit_errors += bit_errors total_bit_count += bit_count print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total_bit_count, total_bit_errors, \ total_bit_errors/total_bit_count)) print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total_bit_count, total_bit_errors, \ total_bit_errors/total_bit_count)) Bits Received = 9976, Bit errors = 209, BEP = 2.10e-02 Bits Received = 9976, Bit errors = 209, BEP = 2.10e-02 ``` ``` [12]: SNRdB = arange(0, 12, .1) Pb_uc = fec.conv_Pb_bound(1/3,7,[4, 12, 20, 72, 225],SNRdB,2) Pb_s_third_3 = fec.conv_Pb_bound(1/3, 8, [3, 0, 15], SNRdB, 1) Pb_s_third_4 = fec.conv_Pb_bound(1/3,10,[6, 0, 6, 0],SNRdB,1) Pb_s_third_5 = fec.conv_Pb_bound(1/3,12,[12, 0, 12, 0, 56], SNRdB,1) Pb_s_third_6 = fec.conv_Pb_bound(1/3,13,[1, 8, 26, 20, 19, 62],SNRdB,1) Pb_s_third_7 = fec.conv_Pb_bound(1/3,14,[1, 0, 20, 0, 53, 0, 184],SNRdB,1) Pb_s_third_8 = fec.conv_Pb_bound(1/3,16,[1, 0, 24, 0, 113, 0, 287, 0], SNRdB,1) Pb_s_half = fec.conv_Pb_bound(1/2,7,[4, 12, 20, 72, 225],SNRdB,1) figure(figsize=(5,5)) semilogy(SNRdB,Pb_uc) semilogy(SNRdB,Pb_s_third_3,'--') semilogy(SNRdB,Pb_s_third_4,'--') semilogy(SNRdB,Pb_s_third_5,'g') semilogy(SNRdB, Pb_s_third_6, '--') semilogy(SNRdB, Pb_s_third_7, '--') semilogy(SNRdB, Pb_s_third_8, '--') #semilogy(SNRdB,Pb_s_half,'--') semilogy([0,1,2,3,4,5],[9.08e-02,2.73e-02,6.52e-03,\ 8.94e-04, 8.54e-05, 5e-6], 'qs') axis([0,12,1e-7,1e0]) title (r'Soft Decision Rate 1/2 Coding Measurements') xlabel(r'$E b/N 0$ (dB)') ylabel(r'Symbol Error Probability') legend(('Uncoded BPSK', 'R=1/3, K=3, Soft', \ 'R=1/3, K=4, Soft', 'R=1/3, K=5, Soft', \ 'R=1/3, K=6, Soft', 'R=1/3, K=7, Soft', \ 'R=1/3, K=8, Soft', 'R=1/3, K=5, Sim', \ 'Simulation'), loc='upper right') grid(); ``` The decoder can also do unquantized soft decisions. This is done by specifying 'unquant' for the metric type. The system will then expect floating point numbers on [0,1] at the decoder input. #### **Rate 1/3** Rate 1/3 convolution encoding/decoding can be done very similarly to the rate 1/2 code. The difference when instantiating, is that the rate 1/3 uses 3 generator polynmials instead of 2. The following table shows ideal generator polynomials at different constraint lengths for rate 1/3 convolutional codes. Table 2: Weight spectra:math:`c_k` for bounding the coded rate 1/3 BEP. | CL | Polynomials | d_{free} | d_f | $d_f +$ |----|-------------------------------------|------------|-------|---------|---------|---------|---------|---------|---------|---------| | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 3 | (7,7,5) = ('111','111','101') | 8 | 3 | 0 | 15 | 0 | 58 | 0 | 201 | 0 | | 4 | (15,13,11) = ('1111','1101','1011') | 10 | 6 | 0 | 6 | 0 | 58 | 0 | 118 | 0 | | 5 | (31,27,21) | 12 | 12 | 0 | 12 | 0 | 56 | 0 | 320 | 0 | | | ('11111','11011','10101') | | | | | | | | | | | 6 | (61,43,39) | 13 | 1 | 8 | 26 | 20 | 19 | 62 | 86 | 204 | | | ('111101','101011','100111') | | | | | | | | | | | 7 | (121,101,91) = | 14 | 1 | 0 | 20 | 0 | 53 | 0 | 184 | 0 | | | ('1111001','1100101','1011011') | | | | | | | | | | | 8 | (247,217,149) = | 16 | 1 | 0 | 24 | 0 | 113 | 0 | 287 | 0 | | | ('11110111','11011001','10010101') | | | | | | | | | | # Rate 1/3 Hard Decision Decoding # **Weight Structure Bounds BEP** Compare with Ziemer pg 668. ``` [14]: SNRdB = arange (0, 12, .1) Pb_uc = fec.conv_Pb_bound(1/3,7,[4, 12, 20, 72, 225],SNRdB,2) Pb_s_third_3_hard = fec.conv_Pb_bound(1/3,8,[3, 0, 15, 0, 58, 0, 201, 0], SNRdB,0) Pb_s_third_4_hard = fec.conv_Pb_bound(1/3,10,[6, 0, 6, 0, 58, 0, 118, 0], SNRdB,0) Pb_s_third_5_hard = fec.conv_Pb_bound(1/3,12,[12, 0, 12, 0, 56, 0, 320, 0], SNRdB,0) Pb_s_third_6_hard = fec.conv_Pb_bound(1/3,13,[1, 8, 26, 20, 19, 62, 86, 204], SNRdB,0) Pb_s_third_7_hard = fec.conv_Pb_bound(1/3,14,[1, 0, 20, 0, 53, 0, 184],SNRdB,0) Pb_s_third_8_hard = fec.conv_Pb_bound(1/3,16,[1, 0, 24, 0, 113, 0, 287, 0], SNRdB,0) figure (figsize=(5,5)) semilogy(SNRdB,Pb_uc) semilogy(SNRdB,Pb_s_third_3_hard,'--') #semilogy(SNRdB,Pb_s_third_4_hard,'--') semilogy(SNRdB,Pb_s_third_5_hard,'--') #semilogy(SNRdB, Pb_s_third_6_hard, '--') semilogy(SNRdB,Pb_s_third_7_hard,'--') #semilogy(SNRdB,Pb_s_third_8_hard,'--') ``` (continues on next page) #### **BEP Simulation** ``` [15]: N_bits_per_frame = 10000 EbN0 = 3 total_bit_errors = 0 total_bit_count = 0 cc1 = fec.fec_conv(('11111','11011','10101'),25) # Encode with shift register starting state of '0000' state = '0000' while total_bit_errors < 100:</pre> # Create 100000 random 0/1 bits x = randint(0,2,N_bits_per_frame) y, state = cc1.conv_encoder(x, state) # Add channel noise to bits, include antipodal level shift to [-1,1] yn_soft = dc.cpx_AWGN(2*y-1,EbN0-10*log10(3),1) # Channel SNR is 10*log10(3) dB_ \rightarrow less yn_hard = ((sign(yn_soft.real)+1)/2).astype(int) z = cc1.viterbi_decoder(yn_hard.real, 'hard') # Count bit errors bit_count, bit_errors = dc.bit_errors(x,z) total_bit_errors += bit_errors total_bit_count += bit_count print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total_bit_count, total_bit_errors, \ total_bit_errors/total_bit_count)) print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total_bit_count, total_bit_errors, \ total_bit_errors/total_bit_count)) Bits Received = 9976, Bit errors = 232, BEP = 2.33e-02 ************ Bits Received = 9976, Bit errors = 232, BEP = 2.33e-02 ``` ``` [16]: SNRdB = arange(0,12,.1) Pb_uc = fec.conv_Pb_bound(1/3,7,[4, 12, 20, 72, 225],SNRdB,2) Pb_s_third_3_hard = fec.conv_Pb_bound(1/3,8,[3, 0, 15, 0, 58, 0, 201, 0],SNRdB,0) Pb_s_third_5_hard = fec.conv_Pb_bound(1/3,12,[12, 0, 12, 0, 56, 0, 320, 0],SNRdB,0) Pb_s_third_7_hard = fec.conv_Pb_bound(1/3,14,[1, 0, 20, 0, 53, 0, 184],SNRdB,0) Pb_s_third_5_hard_sim = array([8.94e-04,1.11e-04,8.73e-06]) figure(figsize=(5,5)) semilogy(SNRdB,Pb_uc) (continues on next page) ``` # **Soft Decision Decoding BEP Simulation** [17]: cc1.traceback_plot() Here we use 3-bit quantization soft decoding. ``` [18]: N_bits_per_frame = 10000 EbN0 = 2 total_bit_errors = 0 total_bit_count = 0 cc1 = fec.fec_conv(('111111','11011','10101'),25) # Encode with shift register starting state of '0000' state = '0000' while total_bit_errors < 100:</pre> # Create 100000 random 0/1 bits x = randint(0,2,N_bits_per_frame) y, state = cc1.conv_encoder(x, state) # Add channel noise to bits, include antipodal level shift to [-1,1] yn = dc.cpx_AWGN(2*y-1,EbN0-10*log10(3),1) # Channel SNR is 10*log10(3) dB less # Translate to [0,7] yn = (yn.real+1)/2*7 z = cc1.viterbi_decoder(yn,'soft',quant_level=3) # Count bit errors bit_count, bit_errors = dc.bit_errors(x,z) total_bit_errors += bit_errors total_bit_count += bit_count print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total_bit_count, total_bit_errors,\ total_bit_errors/total_bit_count)) print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total_bit_count, total_bit_errors, \ total_bit_errors/total_bit_count)) Bits Received = 9976, Bit errors = 61, BEP = 6.11e-03 Bits Received = 19952, Bit errors = 147, BEP = 7.37e-03 ************* Bits Received = 19952, Bit errors = 147, BEP = 7.37e-03 ``` ``` [19]: SNRdB = arange(0, 12, .1) Pb_uc = fec.conv_Pb_bound(1/3,7,[4, 12, 20, 72, 225],SNRdB,2) Pb_s_third_3 = fec.conv_Pb_bound(1/3,8,[3, 0, 15, 0, 58, 0, 201, 0],SNRdB,1) #Pb_s_third_4 = fec.conv_Pb_bound(1/3,10,[6, 0, 6, 0, 58, 0, 118, 0],SNRdB,1) Pb_s_third_5 = fec.conv_Pb_bound(1/3,12,[12, 0, 12, 0, 56, 0, 320, 0], SNRdB,1) #Pb_s_third_6 = fec.conv_Pb_bound(1/3,13,[1, 8, 26, 20, 19, 62, 86, 204],SNRdB,1) Pb_s_third_7 = fec.conv_Pb_bound(1/3,14,[1, 0, 20, 0, 53, 0, 184, 0], SNRdB,1) #Pb_s_third_8 = fec.conv_Pb_bound(1/3,16,[1, 0, 24, 0, 113, 0, 287, 0], SNRdB,1) figure (figsize=(5,5)) semilogy(SNRdB,Pb_uc) semilogy(SNRdB,Pb_s_third_3,'--') #semilogy(SNRdB, Pb_s_third_4, '--') semilogy(SNRdB,Pb_s_third_5,'g') #semilogy(SNRdB,Pb_s_third_6,'--') semilogy(SNRdB,Pb_s_third_7,'r--') #semilogy(SNRdB,Pb_s_third_8,'--') #semilogy(SNRdB,Pb_s_half,'--') semilogy([0,1,2,3,4,5],[9.08e-02,2.73e-02,6.52e-03, \] 8.94e-04, 8.54e-05, 5e-6], 'gs') axis([0,12,1e-7,1e0]) title(r'Soft Decision Rate 1/3 Coding Measurements') xlabel(r'E_b/N_0 (dB)') ylabel(r'Symbol Error Probability') legend(('Uncoded BPSK', 'R=1/3, K=3, Soft', \ #'R=1/3, K=4, Soft', 'R=1/3, K=5, Soft', \ 'R=1/3, K=5, Soft', 'R=1/3, K=7, Soft', \ #'R=1/3, K=8, Soft', 'R=1/2, K=5, Soft', \ 'R-1/3, K=5, Simulation'), loc='upper right') grid(); ``` ``` [1]: %pylab inline #%matplotlib qt import sk_dsp_comm.sigsys as ss import scipy.signal as signal from IPython.display import Audio, display from IPython.display import Image, SVG Populating the interactive namespace from numpy and matplotlib [2]: pylab.rcParams['savefig.dpi'] = 100 # default 72 #pylab.rcParams['figure.figsize'] = (6.0, 4.0) # default (6,4) #%config InlineBackend.figure_formats=['png'] # default for inline viewing %config InlineBackend.figure_formats=['svg'] # SVG inline viewing
#%config InlineBackend.figure_formats=['pdf'] # render pdf figs for LaTeX [3]: import scipy.special as special import sk_dsp_comm.digitalcom as dc import sk_dsp_comm.fec_block as block ``` ### **Block Codes** Block codes take serial source symbols and group them into k-symbol blocks. They then take n-k check symbols to make code words of length n > k. The code is denoted (n,k). The following shows a general block diagram of block encoder. The block encoder takes k source bits and encodes it into a length n codeword. A block decoder then works in reverse. The length n channel symbol codewords are decoded into the original length k source bits. # **Single Error Correction Block Codes** Several block codes are able to correct only one error per block. Two common single error correction codes are cyclic codes and hamming codes. In scikit-dsp-comm there is a module called fec_block.py. This module contains two classes so far: fec_cyclic for cyclic codes and fec_hamming for hamming codes. Each class has methods for encoding, decoding, and plotting theoretical bit error probability bounds. # **Cyclic Codes** A (n,k) cyclic code can easily be generated with an n-k stage shift register with appropriate feedback according to Ziemer and Tranter pgs 646 and 647. The following shows a block diagram for a cyclic encoder. This block diagram can be expanded to larger codes as well. A generator polynomial can be used to determine the position of the binary adders. The previous example uses a generator polynomial of '1011'. This means that there is a binary adder after the input, after second shift register, and after the third shift register. The source symbol length and the channel symbol length can be determined from the number of shift registers j. The length of the generator polynomial is always 1+j. In this case we have 3 shift registers, so j=3. We have k=4 source bits and n=7 channel bits. For other shift register lengths, we can use the following equations. $n=j^2-1$ and k=n-j. The following table (from Ziemer and Peterson pg 429) shows the source symbol length, channel symbol length, and the code rate for various shift register lengths for single error correction codes. | j | k | n | R=k/n | |----|------|------|-------| | 3 | 4 | 7 | 0.57 | | 4 | 11 | 15 | 0.73 | | 5 | 26 | 31 | 0.84 | | 6 | 57 | 63 | 0.90 | | 7 | 120 | 127 | 0.94 | | 8 | 247 | 255 | 0.97 | | 9 | 502 | 511 | 0.98 | | 10 | 1013 | 1023 | 0.99 | The following block diagram shows a block decoder (from Ziemer and Tranter page 647). The block decoder takes in a codeword of channel symbol length n and decodes it to the original source bits of length k. The fec_cyclic class can be used to generate a cyclic code object. The cyclic code object can be initialized by a generator polynomial. The length of the generator determines the source symbol length, the channel symbol length, and the rate. The following shows the generator polynomial '1011' considered in the two example block diagrams. ``` [4]: cc1 = block.fec_cyclic('1011') ``` After the cyclic code object cc1 is created, the cc1.cyclic_encoder method can be used to encode source data bits. In the following example, we generate 16 distinct source symbols to get 16 distinct channel symbol codewords using the cyclic_encoder method. The cyclic_encoder method takes an array of source bits as a paramter. The array of source bits must be a length of a multiple of k. Otherwise, the method will throw an error. ``` [5]: # Generate 16 distinct codewords codewords = zeros((16,7),dtype=int) x = zeros((16,4)) for i in range (0,16): xbin = block.binary(i,4) xbin = array(list(xbin)).astype(int) x[i,:] = xbin x = reshape(x, size(x)).astype(int) codewords = cc1.cyclic_encoder(x) print (reshape (codewords, (16,7))) [[0 \ 0 \ 0 \ 0 \ 0 \ 0]] [0 0 0 1 0 1 1] [0 0 1 0 1 1 0] [0 0 1 1 1 0 1] [0 1 0 0 1 1 1] [0 1 0 1 1 0 0] [0 1 1 0 0 0 1] [0 1 1 1 0 1 0] [1 0 0 0 1 0 1] [1 0 0 1 1 1 0] [1 0 1 0 0 1 1] [1 0 1 1 0 0 0] [1 1 0 0 0 1 0] [1 1 0 1 0 0 1] [1 1 1 0 1 0 0] [1 1 1 1 1 1 1] ``` Now, a bit error is introduced into each of the codewords. Then, the codwords with the error are decoded using the $cyclic_decoder$ method. The $cyclic_decoder$ method takes an array of codewords of length n as a parameter and returns an array of source bits. Even with 1 error introduced into each codeword, All of the original source bits are still decoded properly. ``` [6]: # introduce 1 bit error into each code word and decode codewords = reshape(codewords, (16,7)) for i in range(16): error_pos = i % 6 codewords[i,error_pos] = (codewords[i,error_pos] +1) % 2 codewords = reshape(codewords, size(codewords)) decoded_blocks = cc1.cyclic_decoder(codewords) print (reshape (decoded_blocks, (16,4))) [[0 0 0 0]] [0 0 0 1] [0 0 1 0] [0 0 1 1] [0 1 0 0] [0 1 0 1] [0 1 1 0] [0 1 1 1] [1 0 0 0] [1 0 0 1] [1 0 1 0] [1 0 1 1] [1 1 0 0] [1 1 0 1] (continues on next page) ``` ``` [1 1 1 0] [1 1 1 1]] ``` The following example generates many random source symbols. It then encodes the symbols using the cyclic encoder. It then simulates a channel by adding noise. It then implements hard decisions on each of the incoming bits and puts the received noisy bits into the cyclic decoder. Source bits are then returned and errors are counted until 100 bit errors are received. Once 100 bit errors are received, the bit error probability is calculated. This code can be run at a variety of SNRs and with various code rates. ``` [7]: cc1 = block.fec_cyclic('101001') N blocks per frame = 2000 N_bits_per_frame = N_blocks_per_frame*cc1.k EbN0 = 6 total_bit_errors = 0 total_bit_count = 0 while total_bit_errors < 100:</pre> # Create random 0/1 bits x = randint(0,2,N_bits_per_frame) y = cc1.cyclic_encoder(x) \# Add channel noise to bits and scale to +/- 1 yn = dc.cpx_AWGN(2*y-1,EbN0-10*log10(cc1.n/cc1.k),1) # Channel SNR is dB less # Scale back to 0 and 1 yn = ((sign(yn.real)+1)/2).astype(int) z = cc1.cyclic_decoder(yn) # Count bit errors bit_count, bit_errors = dc.bit_errors(x,z) total_bit_errors += bit_errors total_bit_count += bit_count print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total bit count, total bit errors, \ total_bit_errors/total_bit_count)) print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total_bit_count, total_bit_errors, \ total_bit_errors/total_bit_count)) Bits Received = 52000, Bit errors = 39, BEP = 7.50e-04 Bits Received = 104000, Bit errors = 90, BEP = 8.65e-04 Bits Received = 156000, Bit errors = 134, BEP = 8.59e-04 Bits Received = 156000, Bit errors = 134, BEP = 8.59e-04 ``` There is a function in the fec_block module called block_single_error_Pb_bound that can be used to generate the theoretical bit error probability bounds for single error correction block codes. Measured bit error probabilities from the previous example were recorded to compare to the bounds. ``` [8]: SNRdB = arange(0,12,.1) #SNRdB = arange(9.4,9.6,0.1) Pb_uc = block.block_single_error_Pb_bound(3,SNRdB,False) Pb_c_3 = block.block_single_error_Pb_bound(3,SNRdB) Pb_c_4 = block.block_single_error_Pb_bound(4,SNRdB) Pb_c_5 = block.block_single_error_Pb_bound(5,SNRdB) figure(figsize=(5,5)) semilogy(SNRdB,Pb_uc,'k-') semilogy(SNRdB,Pb_c_3,'c--') semilogy(SNRdB,Pb_c_4,'m--') (continues on next page) ``` These plots show that the simulated bit error probability is very close to the theoretical bit error probabilities. # **Hamming Code** Hamming codes are another form of single error correction block codes. Hamming codes use parity-checks in order to generate and decode block codes. The code rates of Hamming codes are generated the same way as cyclic codes. In this case a parity-check length of length j is chosen, and n and k are calculated by $n=2^j-1$ and k=n-j. Hamming codes are generated first by defining a parity-check matrix H. The parity-check matrix is a j x n matrix containing binary numbers from 1 to n as the columns. For a j=3 (k=4, n=7) Hamming code. The parity-check matrix starts out as the following: $$\mathbf{H} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & & \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & & \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & & \end{bmatrix}$$ (2.46) The parity-cheke matrix can be reordered to provice a systematic code by interchanging the columns to create an identity matrix on the right side of the matrix. In this case, this is done by interchangeing columns 1 and 7, columns 2 and 6, and columns 4 and 5. The resulting parity-check matrix is the following. $$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & & \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & & \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & & \end{bmatrix}$$ (2.47) Next, a generator matrix G is created by restructuring the parity-check matrix. The G matrix is gathered from the H matrix through the following relationship. $$\mathbf{G} = \left[\begin{array}{ccc} I_k & \dots & H_p \end{array} \right] \tag{2.48}$$ where H_p is defined as the transpose of the first k columns of H. For this example we arrive at the following G matrix. G always ends up being a k x n matrix. $$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & & & \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & & \\ 0 & 0 & 1 \\ 1 & & \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & & \end{bmatrix}$$ (2.49) Codewords can be generated by multiplying a source symbol matrix by the generator matrix. $$codeword = xG (2.50)$$ Where the codeword is a column vector of length n and x is a row vector of length n. This is the basic operation of the encoder. The decoder is slightly more complicated. The decoder starts by taking the parity-check matrix H and multiplying it by the codeword column vector. This gives the "syndrome" of the block. The syndrome tells us whether or not there is an error in the codeword. If no errors are present, the syndrome will be 0. If there is an error in the codeword, the syndrome will tell us which bit has the error. $$S = H \cdot codeword \tag{2.51}$$ If the syndrome is nonzero, then it can be used to correct the error bit in the codeword. After that,
the original source blocks can be decoded from the codewords by the following equation. $$source = R \cdot codeword \tag{2.52}$$ Where R is a k x n matrix where R is made up of a k x k identity matrix and a k x n-k matrix of zeros. Again, the Hamming code is only capable of correcting one error per block, so if more than one error is present in the block, then the syndrome cannot be used to correct the error. The hamming code class can be found in the fec_block module as fec_hamming. Hamming codes are sometimes generated using generator polynomials just like with cyclic codes. This is not completely necessary, however, if the previously described process is used. This process simply relies on choosing a number of parity bits and then systematic single-error correction hamming codes are automatically generated. The following will go through an example of a j = 3 (k = 4, k = 7) hamming code. Hamming Block Code Class Definition: ``` [9]: hh1 = block.fec_hamming(3) ``` k and n are calculated form the number of parity checks j and can be accessed by hhl.k and hhl.n. The j x n parity-check matrix H and the k x n generator matrix G can be accessed by hhl.H and hhl.G. These are exactly as described previously. ``` [10]: print('k = ' + str(hh1.k)) print('n = ' + str(hh1.n)) print('H = \n' + str(hh1.H)) print('G = \n' + str(hh1.G)) k = 4 n = 7 H = ``` (continues on next page) ``` [[1 1 0 1 1 0 0] [1 1 1 0 0 1 0] [1 0 1 1 0 0 1]] G = [[1 0 0 0 1 1 1] [0 1 0 0 1 1 0] [0 0 1 0 0 1 1] [0 0 0 1 1 0]] ``` The fec_hamming class has an encoder method called hamm_encoder. This method works the same way as the cyclic encoder. It takes an array of source bits with a length that is a multiple of k and returns an array of codewords. This class has another method called hamm_decoder which can decode an array of codewords. The array of codewords must have a length that is a multiple of n. The following example generates random source bits, encodes them using a hamming encoder, simulates transmitting them over a channel, uses hard decisions after the receiver to get a received array of codewords, and decodes the codewords using the hamming decoder. It runs until it counds 100 bit errors and then calculates the bit error probability. This can be used to simulate hamming codes with different rates (different numbers of parity checks) at different SNRs. ``` [11]: hh1 = block.fec_hamming(5) N_blocks_per_frame = 20000 N_bits_per_frame = N_blocks_per_frame*hh1.k EbN0 = 8 total_bit_errors = 0 total_bit_count = 0 while total_bit_errors < 100:</pre> # Create random 0/1 bits x = randint(0,2,N_bits_per_frame) y = hh1.hamm_encoder(x) \# Add channel noise to bits and scale to +/- 1 yn = dc.cpx_AWGN(2*y-1,EbN0-10*log10(hh1.n/hh1.k),1) # Channel SNR is dB less # Scale back to 0 and 1 yn = ((sign(yn.real)+1)/2).astype(int) z = hh1.hamm_decoder(yn) # Count bit errors bit_count, bit_errors = dc.bit_errors(x,z) total_bit_errors += bit_errors total_bit_count += bit_count print ('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total_bit_count, total_bit_errors, \ total_bit_errors/total_bit_count)) print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %\ (total_bit_count, total_bit_errors, \ total_bit_errors/total_bit_count)) Bits Received = 520000, Bit errors = 12, BEP = 2.31e-05 Bits Received = 1040000, Bit errors = 23, BEP = 2.21e-05 Bits Received = 1560000, Bit errors = 28, BEP = 1.79e-05 Bits Received = 2080000, Bit errors = 38, BEP = 1.83e-05 Bits Received = 2600000, Bit errors = 54, BEP = 2.08e-05 Bits Received = 3120000, Bit errors = 60, BEP = 1.92e-05 Bits Received = 3640000, Bit errors = 65, BEP = 1.79e-05 Bits Received = 4160000, Bit errors = 73, BEP = 1.75e-05 Bits Received = 4680000, Bit errors = 79, BEP = 1.69e-05 (continues on next page) ``` The fec_block_block_single_error_Pb_bound function can also be used to generate the bit error probability bounds for hamming codes. The following example generates theoretical bit error probability bounds for hamming codes and compares it with simulated bit error probabilities from the previous examples. ``` [12]: SNRdB = arange (0, 12, .1) Pb_uc = block.block_single_error_Pb_bound(3,SNRdB,False) Pb_c_3 = block.block_single_error_Pb_bound(3,SNRdB) Pb_c_4 = block.block_single_error_Pb_bound(4,SNRdB) Pb_c_5 = block.block_single_error_Pb_bound(5,SNRdB) figure (figsize=(5,5)) semilogy(SNRdB, Pb_uc, 'k-') semilogy(SNRdB,Pb_c_3,'c--') semilogy(SNRdB,Pb_c_4,'m--') semilogy(SNRdB,Pb_c_5,'g--') semilogy([5,6,7,8,9,10],[6.64e-3,2.32e-3,5.25e-4,1.16e-4,1.46e-5,1.19e-6],'cs') semilogy([5,6,7,8,9],[4.68e-3,1.19e-3,2.48e-4,3.6e-5,1.76e-6],'ms') semilogy([5,6,7,8,9],[4.42e-3,1.11e-3,1.41e-4,1.43e-5,6.73e-7],'gs') axis([0,12,1e-10,1e0]) title('Hamming code BEP') xlabel(r'E_b/N_0 (dB)') ylabel(r'Bit Error Probability') legend(('Uncoded BPSK','(7,4), hard',\ '(15,11), hard', '(31,26), hard',\ '(7,4) \text{ sim'}, '(15,11) \text{ sim'}, \setminus '(31,26) sim'), loc='lower left') grid(); ``` ### **Multiple Error Correction Block Codes** Other block codes are capable of correcting multiple errors in blocks. Golay Codes, Bose_Chaudhuri-Hocquenghem (BCH) Codes, and Reed-Solomon Codes are all capable of correcting multiple errors. These codes have not been developed yet, but they will be the next codes to be added to the fec_block module. # **Golay Code** Golay codes are capable of correcting three errors in a block of 23 symbols. Golay codes are one of the few known "perfect" codes where all error patterns with hamming weight t or less and no error patters with weight greater than t are correctable using a minimum-distance maximum-likelihood decoder. Golay codes are discussed in detail in Ziemer and Peterson pgs 448-450. ### Bose-Chaudhuri-Hocquenghem (BCH) Codes BCH codes are very important because they exist for a wide range of rates, can achieve significant coding gain, and decoders can be implemented even at high speeds. BCH codes are described in detail in Ziemer and Peterson pgs 436-444. ### **Reed-Solomon Codes** RS codes are nonbinary BCH codes that use input and output alphabets having 2^m symbols, $\{0, 1, 2, ..., 2^m - 1\}$. Block length is $n = 2^m - 1$ and can be extended to $n = 2^m$ or $n = 2^m + 1$. Reed-Solomon codes are useful in burst communications Reed-Solomon Codes are discussed in detail in Ziemer and Peterson pgs 444-447. # coeff2header Digital Filter Coefficient Conversion to C Header Files Copyright (c) March 2017, Mark Wickert All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. sk_dsp_comm.coeff2header.**CA_code_header** (fname_out, Nca) Write 1023 bit CA (Gold) Code Header Files . coeff2header 93 Mark Wickert February 2015 ``` sk_dsp_comm.coeff2header.FIR_fix_header (fname_out, h) Write FIR Fixed-Point Filter Header Files Mark Wickert February 2015 sk_dsp_comm.coeff2header.FIR_header (fname_out, h) Write FIR Filter Header Files Mark Wickert February 2015 sk_dsp_comm.coeff2header.IIR_sos_header (fname_out, SOS_mat) Write IIR SOS Header Files File format is compatible with CMSIS-DSP IIR Directform II Filter Functions Mark Wickert March 2015-October 2016 sk_dsp_comm.coeff2header.freqz_resp_list (b, a=array([1]), mode='dB', fs=1.0, Npts=1024, fsize=(6, 4)) A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced ``` using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib $freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4))$ #### **Parameters** - **b** [ndarray of numerator coefficients] - a [ndarray of denominator coefficients] **mode** [display mode: 'dB' magnitude, 'phase' in radians, or] 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz **Npts** [number of points to plot; default is 1024] fsize [figure size; defult is (6,4) inches] Mark Wickert, January 2015 # digitalcom Digital Communications Function Module Copyright (c) March 2017, Mark Wickert All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. ``` sk_dsp_comm.digitalcom.AWGN_chan(x_bits, EBNO_dB) ``` #### **Parameters** **x_bits** [serial bit stream of 0/1 values.] **EBN0_dB** [Energy per bit to noise power density ratio in dB of the serial bit stream sent through the AWGN channel. Frequently we equate EBN0 to SNR in link budget calculations.] #### Returns **y_bits** [Received serial bit stream following hard decisions. This bit will have bit errors. To check the estimated bit error probability use BPSK_BEP () or simply:] ``` >>> Pe_est = sum(xor(x_bits,y_bits))/length(x_bits); ... ``` ### Mark Wickert, March 2015 ``` sk_dsp_comm.digitalcom.BPSK_BEP(tx_data, rx_data, Ncorr=1024, Ntransient=0) ``` Count bit errors between a transmitted and received BPSK signal. Time delay between streams is detected as well as ambiquity resolution due to carrier phase lock offsets of $k * \pi$, k=0,1. The ndarray tx_data is Tx +/-1 symbols as real numbers I. The ndarray rx_data is Rx +/-1 symbols as real numbers I. Note: Ncorr needs to be even ``` sk_dsp_comm.digitalcom.BPSK_tx(N_bits, Ns, ach_fc=2.0, ach_lvl_dB=-100, pulse='rect', al-pha=0.25, M=6) ``` Generates biphase shift keyed (BPSK) transmitter with adjacent channel interference. Generates three BPSK signals with rectangular or square root raised cosine (SRC) pulse shaping of duration N_{bits} and N_{s} samples per bit. The desired signal is centered on f = 0, which the adjacent channel signals to the left and right are also generated at dB level relative to the desired signal. Used in the digital communications Case Study supplement. #### **Parameters** ``` N_bits [the number of bits to simulate] Ns [the number of samples per bit] ach_fc [the frequency offset of the adjacent channel signals (default 2.0)] ach_lvl_dB [the level of the adjacent channel signals in dB (default -100)] pulse [the pulse shape 'rect' or 'src'] ``` **alpha** [square root raised cosine pulse shape factor (default = 0.25)] M [square root raised cosine pulse truncation factor (default = 6)] # Returns - x [ndarray of the composite signal $x0 + ach_lvl*(x1p + x1m)$] - **b** [the transmit pulse shape] . digitalcom 95 **data0** [the data bits used to form the desired signal; used for error checking] # **Examples** ``` >>> x,b,data0 = BPSK_tx(1000,10,'src') ``` sk_dsp_comm.digitalcom.**GMSK_bb** (*N_bits*, *Ns*, *MSK=0*, *BT=0.35*) MSK/GMSK Complex Baseband Modulation x,data = gmsk(N bits, Ns, BT = 0.35, MSK = 0) #### **Parameters** **N_bits** [number of symbols processed] Ns [the number of samples per bit] **MSK** [0 for no shaping which is standard MSK, MSK <> 0 -> GMSK is generated.] **BT** [premodulation Bb*T product which sets the bandwidth of the Gaussian lowpass filter] Mark Wickert Python version November 2014 sk_dsp_comm.digitalcom.**MPSK_BEP_thy** (*SNR_dB*, *M*, *EbN0_Mode=True*) Approximate the bit error probability of MPSK assuming Gray encoding Mark Wickert November 2018 sk_dsp_comm.digitalcom.MPSK_bb (*N_symb*, *Ns*, *M*, *pulse='rect'*, *alpha=0.25*, *MM=6*) Generate a complex baseband MPSK signal with pulse shaping. #### **Parameters** **N_symb** [number of MPSK symbols to produce] Ns [the number of samples per bit,] M [MPSK modulation order, e.g., 4, 8, 16, ...] pulse_type ['rect', 'rc', 'src' (default 'rect')] **alpha** [excess bandwidth factor(default 0.25)] **MM** [single sided pulse duration (default = 6)] #### Returns x [ndarray of the MPSK signal values] **b** [ndarray of the pulse shape] data [ndarray of the underlying data bits] # Notes Pulse shapes include 'rect' (rectangular), 'rc' (raised cosine), 'src' (root raised cosine). The actual pulse length is 2*M+1 samples. This function is used by BPSK_tx in the Case Study article. # **Examples** ``` >>> from sk_dsp_comm import digitalcom as dc >>> import scipy.signal as signal >>> import matplotlib.pyplot as plt >>> x,b,data = dc.MPSK_bb(500,10,8,'src',0.35) >>> # Matched filter received signal x >>> y = signal.lfilter(b,1,x) >>> plt.plot(y.real[12*10:],y.imag[12*10:]) >>> plt.xlabel('In-Phase') >>> plt.ylabel('Quadrature') >>> plt.axis('equal') >>> # Sample once per symbol >>> plt.plot(y.real[12*10::10],y.imag[12*10::10],'r.') >>> plt.show() ``` sk_dsp_comm.digitalcom.MPSK_gray_decode (x_hat, M=4) Decode MPSK IQ symbols to a serial bit stream using gray2bin decoding x_hat = symbol spaced samples of the MPSK waveform taken at the maximum eye opening. Normally this is following the matched filter Mark Wickert November 2018 sk_dsp_comm.digitalcom.MPSK_gray_encode_bb (N_symb, Ns, M=4, pulse='rect', alpha=0.35, M span=6, ext data=None) MPSK_gray_bb: A gray code mapped MPSK complex baseband transmitter x,b,tx_data = MPSK_gray_bb(K,Ns,M) N_symb = the number of symbols to process Ns = number of samples per symbol M = modulation order: 2, 4, 8, 16 MPSK alpha = squareroot raised cosine excess bandwidth factor. Can range over 0 < alpha < 1. pulse = 'rect', 'src', or 'rc' . digitalcom 97 #### x = complex baseband digital modulation b = transmitter shaping filter, rectangle or SRC $tx_data = xI + 1j*xQ = inphase symbol sequence + 1j*quadrature symbol sequence$ Mark Wickert November 2018 ``` sk_dsp_comm.digitalcom.OFDM_rx(x, Nf, N, Np=0, cp=False, Ncp=0, alpha=0.95, ht=None) ``` #### **Parameters** - x [Received complex baseband OFDM signal] - Nf [Number of filled carriers, must be even and Nf < N] - N [Total number of carriers; generally a power 2, e.g., 64, 1024, etc] - **Np** [Period of pilot code blocks; 0 <=> no pilots; -1 <=> use the ht impulse response input to equalize the OFDM symbols; note equalization still requires Ncp > 0 to work on a delay spread channel.] - **cp** [False/True <=> if False assume no CP is present] - Ncp [The length of the cyclic prefix] - **alpha** [The filter forgetting factor in the channel estimator. Typically alpha is 0.9 to 0.99.] - **nt** [Input the known theoretical channel impulse response] #### Returns - **z_out** [Recovered complex baseband QAM symbols as a serial stream; as appropriate channel estimation has been applied.] - **H** [channel estimate (in the frequency domain at each subcarrier)] #### See also: OFDM_tx ### **Examples** ``` >>> import matplotlib.pyplot as plt >>> from sk dsp comm import digitalcom as dc >>> from scipy import signal >>> from numpy import array >>> hc = array([1.0, 0.1, -0.05, 0.15, 0.2, 0.05]) # impulse response spanning. → five symbols >>> # Quick example using the above channel with no cyclic prefix >>> x1,b1,IQ_data1 = dc.QAM_bb(50000,1,'16qam') >>> x_out = dc.OFDM_tx(IQ_data1,32,64,0,True,0) >>> c_out = signal.lfilter(hc,1,x_out) # Apply channel distortion >>> r_out = dc.cpx_AWGN(c_out, 100, 64/32) # Es/N0 = 100 dB >>> z_out, H = dc.OFDM_rx(r_out, 32, 64, -1, True, 0, alpha=0.95, ht=hc) >>> plt.plot(z_out[200:].real,z_out[200:].imag,'.') >>> plt.xlabel('In-Phase') >>> plt.ylabel('Quadrature') >>> plt.axis('equal') >>> plt.grid() >>> plt.show() ``` Another example with noise using a 10 symbol cyclic prefix and channel estimation: ``` >>> x_out = dc.OFDM_tx(IQ_data1,32,64,100,True,10) >>> c_out = signal.lfilter(hc,1,x_out) # Apply channel distortion >>> r_out = dc.cpx_AWGN(c_out,25,64/32) # Es/N0 = 25 dB >>> z_out,H = dc.OFDM_rx(r_out,32,64,100,True,10,alpha=0.95,ht=hc); >>> plt.figure() # if channel estimation is turned on need this >>> plt.plot(z_out[-2000:].real,z_out[-2000:].imag,'.') # allow settling time >>> plt.xlabel('In-Phase') >>> plt.ylabel('Quadrature') >>> plt.axis('equal') >>> plt.grid() >>> plt.show() ``` sk_dsp_comm.digitalcom.**OFDM_tx**(*IQ_data*, *Nf*, *N*, *Np=0*, *cp=False*, *Ncp=0*) ### **Parameters** . digitalcom 99 **IQ_data** [+/-1, +/-3, etc complex QAM symbol sample inputs] **Nf** [number of filled carriers, must be even and Nf < N] N [total number of carriers; generally a power 2, e.g., 64, 1024, etc] **Np** [Period of pilot code blocks; 0 <=> no pilots] cp [False/True <=> bypass cp insertion entirely if False] **Ncp** [the length of the cyclic prefix] ### Returns **x_out** [complex baseband OFDM waveform output after P/S and CP insertion] ### See also: OFDM_rx # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import digitalcom as dc >>> x1,b1,IQ_data1 = dc.QAM_bb(50000,1,'16qam') >>> x_out = dc.OFDM_tx(IQ_data1,32,64) >>> plt.psd(x_out,2**10,1); >>> plt.xlabel(r'Normalized Frequency ($\omega/(2\pi)=f/f_s$)') >>> plt.ylim([-40,0]) >>> plt.xlim([-.5,.5]) >>> plt.show() ``` sk_dsp_comm.digitalcom.**PCM_decode**(*x_bits*, *N_bits*) ## **Parameters** x_bits [serial bit stream of 0/1 values. The length of] x_bits must be a multiple of N_bitsN_bits [bit precision of PCM samples] #### Returns xhat [decoded PCM signal samples] Mark Wickert, March 2015 $sk_dsp_comm.digitalcom.PCM_encode(x, N_bits)$ ### **Parameters** **x** [signal samples to be PCM encoded] N_bits; bit precision of PCM samples #### Returns $x_bits = encoded serial bit stream of 0/1 values. MSB first.$ Mark Wickert, Mark 2015 sk_dsp_comm.digitalcom.QAM_BEP_thy (SNR_dB, M, EbN0_Mode=True) Approximate the bit error probability of QAM assuming Gray encoding Mark Wickert November 2018
sk_dsp_comm.digitalcom.QAM_SEP (tx_data, rx_data, mod_type, Ncorr=1024, Ntransient=0) Count symbol errors between a transmitted and received QAM signal. The received symbols are assumed to be soft values on a unit square. Time delay between streams is detected. The ndarray tx_data is Tx complex symbols. The ndarray rx_data is Rx complex symbols. Note: Ncorr needs to be even sk_dsp_comm.digitalcom.QAM_bb (*N_symb*, *Ns*, *mod_type='16qam'*, *pulse='rect'*, *alpha=0.35*) QAM_BB_TX: A complex baseband transmitter x,b,tx_data = QAM_bb(K,Ns,M) **N_symb = the number of symbols to process** Ns = number of samples per symbol mod_type = modulation type: qpsk, 16qam, 64qam, or 256qam alpha = squareroot raised codine pulse shape bandwidth factor. For DOCSIS alpha = 0.12 to 0.18. In general alpha can range over 0 < alpha < 1. SRC = pulse shape: 0-> rect, 1-> SRC . digitalcom 101 ``` x = complex baseband digital modulation b = transmitter shaping filter, rectangle or SRC tx_data = xI + 1j*xQ = inphase symbol sequence + 1j*quadrature symbol sequence Mark Wickert November 2014 sk_dsp_comm.digitalcom.QAM_gray_decode (x_hat, M=4) Decode MQAM IQ symbols to a serial bit stream using gray2bin decoding x_hat = symbol spaced samples of the QAM waveform taken at the maximum eye opening. Normally this is following the matched filter Mark Wickert April 2018 sk_dsp_comm.digitalcom.QAM_gray_encode_bb(N_symb, Ns, M=4, pulse='rect', alpha=0.35, M_span=6, ext_data=None QAM_gray_bb: A gray code mapped QAM complex baseband transmitter x,b,tx_data = QAM_gray_bb(K,Ns,M) Parameters N symb [The number of symbols to process] Ns [Number of samples per symbol] M [Modulation order: 2, 4, 16, 64, 256 QAM. Note 2 <=> BPSK, 4 <=> QPSK] alpha [Square root raised cosine excess bandwidth factor.] For DOCSIS alpha = 0.12 to 0.18. In general alpha can range over 0 < alpha < 1. pulse ['rect', 'src', or 'rc'] Returns x [Complex baseband digital modulation] b [Transmitter shaping filter, rectangle or SRC] \mathbf{tx}_{\mathbf{data}} [\mathbf{xI} + 1]^* \mathbf{xQ} = \text{inphase symbol sequence} + 1]^* \mathbf{quadrature symbol sequence}] See also: QAM_gray_decode sk_dsp_comm.digitalcom.QPSK_BEP(tx_data, rx_data, Ncorr=1024, Ntransient=0) Count bit errors between a transmitted and received QPSK signal. Time delay between streams is detected as well as ambiquity resolution due to carrier phase lock offsets of k * \frac{\pi}{4}, k=0,1,2,3. The ndarray sdata is Tx +/-1 symbols as complex numbers I + j*Q. The ndarray data is Rx + l-1 symbols as complex numbers I + j*Q. Note: Ncorr needs to be even sk dsp comm.digitalcom.QPSK bb (N symb, Ns, lfsr len=5, pulse='src', alpha=0.25, M=6) sk_dsp_comm.digitalcom.QPSK_rx(fc, N_symb, Rs, EsN0=100, fs=125, lfsr_len=10, phase=0, pulse='src') This function generates sk_dsp_comm.digitalcom.QPSK_tx(fc, N_symb, Rs, fs=125, lfsr_len=10, pulse='src') sk_dsp_comm.digitalcom.Q_fctn(x) Gaussian Q-function ``` ``` sk_dsp_comm.digitalcom.RZ_bits (N_bits, Ns, pulse='rect', alpha=0.25, M=6) Generate return-to-zero (RZ) data bits with pulse shaping. ``` A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping. #### **Parameters** ``` N_bits [number of RZ {0,1} data bits to produce] Ns [the number of samples per bit,] pulse_type ['rect', 'rc', 'src' (default 'rect')] alpha [excess bandwidth factor(default 0.25)] M [single sided pulse duration (default = 6)] ``` #### Returns - x [ndarray of the RZ signal values] - **b** [ndarray of the pulse shape] - data [ndarray of the underlying data bits] #### **Notes** Pulse shapes include 'rect' (rectangular), 'rc' (raised cosine), 'src' (root raised cosine). The actual pulse length is 2*M+1 samples. This function is used by BPSK tx in the Case Study article. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.digitalcom import RZ_bits >>> x,b,data = RZ_bits(100,10) >>> t = arange(len(x)) >>> plt.plot(t,x) >>> plt.ylim([-0.01, 1.01]) >>> plt.show() ``` sk_dsp_comm.digitalcom.bin2gray(d_word, b_width) Convert integer bit words to gray encoded binary words via Gray coding starting from the MSB to the LSB Mark Wickert November 2018 ``` sk_dsp_comm.digitalcom.bit_errors(tx_data, rx_data, Ncorr=1024, Ntransient=0) ``` Count bit errors between a transmitted and received BPSK signal. Time delay between streams is detected as well as ambiquity resolution due to carrier phase lock offsets of $k * \pi$, k=0,1. The ndarray tx_data is Tx 0/1 bits as real numbers I. The ndarray rx_data is Rx 0/1 bits as real numbers I. Note: Ncorr needs to be even sk_dsp_comm.digitalcom.chan_est_equalize(z, Np, alpha, Ht=None) This is a helper function for $OFDM_rx()$ to unpack pilot blocks from from the entire set of received OFDM symbols (the Nf of N filled carriers only); then estimate the channel array H recursively, and finally apply H_hat to Y, i.e., $X_{hat} = Y/H_{hat}$ carrier-by-carrier. Note if Np = -1, then $H_{hat} = H$, the true channel. ### **Parameters** z [Input N_OFDM x Nf 2D array containing pilot blocks and OFDM data symbols.] **Np** [The pilot block period; if -1 use the known channel impulse response input to ht.] . digitalcom 103 alpha [The forgetting factor used to recursively estimate H_hat] **Ht** [The theoretical channel frquency response to allow ideal equalization provided Ncp is adequate.] ### Returns - **zz_out** [The input z with the pilot blocks removed and one-tap equalization applied to each of the Nf carriers.] - **H** [The channel estimate in the frequency domain; an array of length Nf; will return Ht if provided as an input.] # **Examples** ``` >>> from sk_dsp_comm.digitalcom import chan_est_equalize >>> zz_out, H = chan_est_eq(z, Nf, Np, alpha, Ht=None) ``` $sk_dsp_comm.digitalcom.eye_plot(x, L, S=0)$ Eye pattern plot of a baseband digital communications waveform. The signal must be real, but can be multivalued in terms of the underlying modulation scheme. Used for BPSK eye plots in the Case Study article. #### **Parameters** - x [ndarray of the real input data vector/array] - L [display length in samples (usually two symbols)] - **S** [start index] ### Returns **None** [A plot window opens containing the eye plot] # **Notes** Increase S to eliminate filter transients. # **Examples** 1000 bits at 10 samples per bit with 'rc' shaping. ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import digitalcom as dc >>> x,b, data = dc.NRZ_bits(1000,10,'rc') >>> dc.eye_plot(x,20,60) >>> plt.show() ``` sk_dsp_comm.digitalcom.farrow_resample(x, fs_old, fs_new) # **Parameters** **x** [Input list representing a signal vector needing resampling.] fs_old [Starting/old sampling frequency.] **fs_new** [New sampling frequency.] # Returns y [List representing the signal vector resampled at the new frequency.] . digitalcom 105 #### **Notes** A cubic interpolator using a Farrow structure is used resample the input data at a new sampling rate that may be an irrational multiple of the input sampling rate. Time alignment can be found for a integer value M, found with the following: $$f_{s,out} = f_{s,in}(M-1)/M$$ The filter coefficients used here and a more comprehensive listing can be found in H. Meyr, M. Moeneclaey, & S. Fechtel, "Digital Communication Receivers," Wiley, 1998, Chapter 9, pp. 521-523. Another good paper on variable interpolators is: L. Erup, F. Gardner, & R. Harris, "Interpolation in Digital Modems-Part II: Implementation and Performance," IEEE Comm. Trans., June 1993, pp. 998-1008. A founding paper on the subject of interpolators is: C. W. Farrow, "A Continuously variable Digital Delay Element," Proceedings of the IEEE Intern. Symp. on Circuits Syst., pp. 2641-2645, June 1988. Mark Wickert April 2003, recoded to Python November 2013 # **Examples** The following example uses a QPSK signal with rc pulse shaping, and time alignment at M = 15. ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk dsp comm import digitalcom as dc >>> Ns = 8 >>> Rs = 1. >>> fsin = Ns*Rs >>> Tsin = 1 / fsin >>> N = 200 >>> ts = 1 >>> x, b, data = dc.MPSK_bb(N+12, Ns, 4, 'rc') >>> x = x[12*Ns:] >>> xxI = x.real >>> M = 15 >>> fsout = fsin \star (M-1) / M >>> Tsout = 1. / fsout >>> xI = dc.farrow_resample(xxI, fsin, fsin) >>> tx = arange(0, len(xI)) / fsin >>> yI = dc.farrow_resample(xxI, fsin, fsout) >>> ty = arange(0, len(yI)) / fsout >>> plt.plot(tx - Tsin, xI) >>> plt.plot(tx[ts::Ns] - Tsin, xI[ts::Ns], 'r.') >>> plt.plot(ty[ts::Ns] - Tsout, yI[ts::Ns], 'q.') >>> plt.title(r'Impact of Asynchronous Sampling') >>> plt.ylabel(r'Real Signal Amplitude') >>> plt.xlabel(r'Symbol Rate Normalized Time') >>> plt.xlim([0, 20]) >>> plt.grid() >>> plt.show() ``` sk_dsp_comm.digitalcom.from_bin(bin_array) Convert binary array back a nonnegative integer. The array length is the bit width. The first input index holds the MSB and the last holds the LSB. sk_dsp_comm.digitalcom.gray2bin(d_word, b_width) Convert gray encoded binary words to integer bit words via Gray decoding starting from the MSB to the LSB #### Mark Wickert November 2018 sk_dsp_comm.digitalcom.mux_pilot_blocks(IQ_data, Np) #### **Parameters** **IQ_data** [a 2D array of input QAM symbols with the columns] representing the NF carrier frequencies and each row the QAM symbols used to form an OFDM symbol **Np** [the period of the pilot blocks; e.g., a pilot block is] inserted every Np OFDM symbols (Np-1 OFDM data symbols of width Nf are inserted in between the pilot blocks. #### Returns **IQ_data** [IQ_data with pilot blocks inserted] #### See also: OFDM tx #### **Notes** A helper function called by $OFDM_tx()$ that inserts pilot block for use in channel estimation when a delay spread channel is present. $sk_dsp_comm.digitalcom.my_psd(x, NFFT=1024, Fs=1)$ A local version of NumPy's PSD function that returns the plot arrays. A mlab.psd wrapper function that returns two ndarrays; makes no attempt to auto plot anything. #### **Parameters** **x**
[ndarray input signal] **NFFT** [a power of two, e.g., $2^{**}10 = 1024$] Fs [the sampling rate in Hz] #### Returns **Px** [ndarray of the power spectrum estimate] . digitalcom 107 f [ndarray of frequency values] # **Notes** This function makes it easier to overlay spectrum plots because you have better control over the axis scaling than when using psd() in the autoscale mode. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import digitalcom as dc >>> from numpy import log10 >>> x,b, data = dc.NRZ_bits(10000,10) >>> Px,f = dc.my_psd(x,2**10,10) >>> plt.plot(f, 10*log10(Px)) >>> plt.show() ``` ``` sk_dsp_comm.digitalcom.rc_imp(Ns, alpha, M=6) ``` A truncated raised cosine pulse used in digital communications. The pulse shaping factor $0 < \alpha < 1$ is required as well as the truncation factor M which sets the pulse duration to be $2*M*T_{symbol}$. #### **Parameters** ``` Ns [number of samples per symbol]alpha [excess bandwidth factor on (0, 1), e.g., 0.35]M [equals RC one-sided symbol truncation factor] ``` #### Returns **b** [ndarray containing the pulse shape] # See also: ``` sqrt_rc_imp ``` #### **Notes** The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform. # **Examples** Ten samples per symbol and $\alpha = 0.35$. ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm.digitalcom import rc_imp >>> from numpy import arange >>> b = rc_imp(10,0.35) >>> n = arange(-10*6,10*6+1) >>> plt.stem(n,b) >>> plt.show() ``` sk_dsp_comm.digitalcom.scatter(x, Ns, start) Sample a baseband digital communications waveform at the symbol spacing. #### **Parameters** x [ndarray of the input digital comm signal] Ns [number of samples per symbol (bit)] **start** [the array index to start the sampling] #### Returns **xI** [ndarray of the real part of x following sampling] **xQ** [ndarray of the imaginary part of x following sampling] . digitalcom 109 #### **Notes** Normally the signal is complex, so the scatter plot contains clusters at point in the complex plane. For a binary signal such as BPSK, the point centers are nominally +/-1 on the real axis. Start is used to eliminate transients from the FIR pulse shaping filters from appearing in the scatter plot. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import digitalcom as dc >>> x,b, data = dc.NRZ_bits(1000,10,'rc') ``` Add some noise so points are now scattered about +/-1. ``` >>> y = dc.cpx_AWGN(x,20,10) >>> yI,yQ = dc.scatter(y,10,60) >>> plt.plot(yI,yQ,'.') >>> plt.grid() >>> plt.xlabel('In-Phase') >>> plt.ylabel('Quadrature') >>> plt.axis('equal') >>> plt.show() ``` ``` sk_dsp_comm.digitalcom.sqrt_rc_imp(Ns, alpha, M=6) ``` A truncated square root raised cosine pulse used in digital communications. The pulse shaping factor $0 < \alpha < 1$ is required as well as the truncation factor M which sets the pulse duration to be $2*M*T_{symbol}$. #### **Parameters** ``` Ns [number of samples per symbol] alpha [excess bandwidth factor on (0, 1), e.g., 0.35] ``` M [equals RC one-sided symbol truncation factor] # Returns **b** [ndarray containing the pulse shape] #### **Notes** The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform. When square root raised cosine (SRC) pulse is used to generate Tx signals and at the receiver used as a matched filter (receiver FIR filter), the received signal is now raised cosine shaped, thus having zero intersymbol interference and the optimum removal of additive white noise if present at the receiver input. # **Examples** Ten samples per symbol and $\alpha = 0.35$. ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.digitalcom import sqrt_rc_imp >>> b = sqrt_rc_imp(10,0.35) >>> n = arange(-10*6,10*6+1) >>> plt.stem(n,b) >>> plt.show() ``` ``` sk_dsp_comm.digitalcom.strips(x, Nx, fig_size=(6, 4)) ``` Plots the contents of real ndarray x as a vertical stacking of strips, each of length Nx. The default figure size is (6,4) inches. The yaxis tick labels are the starting index of each strip. The red dashed lines correspond to zero amplitude in each strip. ``` strips(x,Nx,my_figsize=(6,4)) ``` Mark Wickert April 2014 ``` sk_dsp_comm.digitalcom.time_delay(x, D, N=4) ``` A time varying time delay which takes advantage of the Farrow structure for cubic interpolation: ``` y = time_delay(x,D,N = 3) ``` . digitalcom 111 Note that D is an array of the same length as the input signal x. This allows you to make the delay a function of time. If you want a constant delay just use D*zeros(len(x)). The minimum delay allowable is one sample or D = 1.0. This is due to the causal system nature of the Farrow structure. A founding paper on the subject of interpolators is: C. W. Farrow, "A Continuously variable Digital Delay Element," Proceedings of the IEEE Intern. Symp. on Circuits Syst., pp. 2641-2645, June 1988. Mark Wickert, February 2014 sk dsp comm.digitalcom.to bin(data, width) Convert an unsigned integer to a numpy binary array with the first element the MSB and the last element the LSB. sk_dsp_comm.digitalcom.xcorr(x1, x2, Nlags) r12, k = xcorr(x1,x2,Nlags), r12 and k are ndarray's Compute the energy normalized cross correlation between the sequences x1 and x2. If x1 = x2 the cross correlation is the autocorrelation. The number of lags sets how many lags to return centered about zero # fec_conv A Convolutional Encoding and Decoding Copyright (c) March 2017, Mark Wickert All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. A forward error correcting coding (FEC) class which defines methods for performing convolutional encoding and decoding. Arbitrary polynomials are supported, but the rate is presently limited to r = 1/n, where n = 2. Punctured (perforated) convolutional codes are also supported. The puncturing pattern (matrix) is arbitrary. Two popular encoder polynomial sets are: ``` K = 3 = > G1 = '111', G2 = '101' and K = 7 = > G1 = '1011011', G2 = '1111001'. ``` A popular puncturing pattern to convert from rate 1/2 to rate 3/4 is a G1 output puncture pattern of '110' and a G2 output puncture pattern of '101'. Graphical display functions are included to allow the user to better understand the operation of the Viterbi decoder. ``` Mark Wickert and Andrew Smit: October 2018. ``` ``` sk_dsp_comm.fec_conv.binary (num, length=8) Format an integer to binary without the leading '0b' sk_dsp_comm.fec_conv.conv_Pb_bound (R, dfree, Ck, SNRdB, hard_soft, M=2) Coded bit error probabilty ``` Convolution coding bit error probability upper bound according to Ziemer & Peterson 7-16, p. 507 Mark Wickert November 2014 #### **Parameters** R: Code rate dfree: Free distance of the code Ck: Weight coefficient SNRdB: Signal to noise ratio in dB hard_soft: 0 hard, 1 soft, 2 uncoded M: M-ary #### **Notes** The code rate R is given by $R_s = \frac{k}{n}$. Mark Wickert and Andrew Smit 2018 #### **Examples** ``` >>> import numpy as np >>> from sk dsp comm import fec conv as fec >>> import matplotlib.pyplot as plt >>> SNRdB = np.arange(2,12,.1) >>> Pb = fec.conv_Pb_bound(1./2,10,[36, 0, 211, 0, 1404, 0, 11633],SNRdB,2) >>> Pb_1_2 = fec.conv_Pb_bound(1./2,10,[36, 0, 211, 0, 1404, 0, 11633], SNRdB,1) >>> Pb_3_4 = fec.conv_Pb_bound(3./4,4,[164, 0, 5200, 0, 151211, 0, 3988108], SNRdB, \hookrightarrow 1) >>> plt.semilogy(SNRdB,Pb) >>> plt.semilogy(SNRdB,Pb_1_2) >>> plt.semilogy(SNRdB,Pb_3_4) >>> plt.axis([2,12,1e-7,1e0]) >>> plt.xlabel(r'E_b/N_0 (dB)') >>> plt.ylabel(r'Symbol Error Probability') >>> plt.legend(('Uncoded BPSK', 'R=1/2, K=7, Soft', 'R=3/4 (punc), K=7, Soft'), loc= → 'best') >>> plt.grid(); >>> plt.show() ``` class sk dsp comm.fec conv.fec conv (G=('111', '101'), Depth=10) Class responsible for creating rate 1/2 convolutional code objects, and then encoding and decoding the user code set in polynomials of G. Key methods provided include <code>conv_encoder()</code>, <code>viterbi_decoder()</code>, <code>puncture()</code>, <code>depuncture()</code>, <code>trellis_plot()</code>, and <code>traceback_plot()</code>. #### **Parameters** G: A tuple of two binary strings corresponding to the encoder polynomials Depth: The decision depth employed by the Viterbi decoder method . fec conv 113 ``` >>> from sk_dsp_comm import fec_conv >>> # Rate 1/2 >>> cc1 = fec_conv.fec_conv(('101', '111'), Depth=10) # decision depth is 10 ``` ``` >>> # Rate 1/3 >>> from sk_dsp_comm import fec_conv >>> cc2 = fec_conv.fec_conv(('101','011','111'), Depth=15) # decision
depth is 15 ``` # **Methods** | <pre>bm_calc(ref_code_bits, rec_code_bits,)</pre> | distance = bm_calc(ref_code_bits, rec_code_bits, | |--|--| | | metric_type) Branch metrics calculation | | conv_encoder(input, state) | output, state = conv_encoder(input,state) We get the | | | 1/2 or 1/3 rate from self.rate Polys G1 and G2 are | | | entered as binary strings, e.g, G1 = '111' and G2 = | | | '101' for $K = 3 G1 = '1011011'$ and $G2 = '1111001'$ | | | for $K = 7$ G3 is also included for rate 1/3 Input | | | state as a binary string of length K-1, e.g., '00' or | | | '0000000' e.g., state = '00' for $K = 3$ e.g., state = | | | '000000' for $K = 7$ Mark Wickert and Andrew Smit | | | 2018 | | depuncture(soft_bits[, puncture_pattern,]) | Apply de-puncturing to the soft bits coming from the | | | channel. | | <pre>puncture(code_bits[, puncture_pattern])</pre> | Apply puncturing to the serial bits produced by con- | | | volutionally encoding. | | traceback_plot([fsize]) | Plots a path of the possible last 4 states. | | trellis_plot([fsize]) | Plots a trellis diagram of the possible state transi- | | | tions. | | | continues on next page | | | | # Table 1 – continued from previous page | viterbi_decoder(x[, | metric_type, | A method which performs Viterbi decoding of noisy | |---------------------|--------------|---| | quant_level]) | | bit stream, taking as input soft bit values centered on | | | | +/-1 and returning hard decision 0/1 bits. | bm_calc (ref_code_bits, rec_code_bits, metric_type, quant_level) distance = bm_calc(ref_code_bits, rec_code_bits, metric_type) Branch metrics calculation Mark Wickert and Andrew Smit October 2018 #### conv_encoder (input, state) output, state = conv_encoder(input,state) We get the 1/2 or 1/3 rate from self.rate Polys G1 and G2 are entered as binary strings, e.g, G1 = '111' and G2 = '101' for K = 3 G1 = '1011011' and G2 = '1111001' for K = 7 G3 is also included for rate 1/3 Input state as a binary string of length K-1, e.g., '00' or '00000000' e.g., state = '00' for K = 3 e.g., state = '000000' for K = 7 Mark Wickert and Andrew Smit 2018 **depuncture** (soft bits, puncture pattern=('110', '101'), erase value=3.5) Apply de-puncturing to the soft bits coming from the channel. Erasure bits are inserted to return the soft bit values back to a form that can be Viterbi decoded. #### **Parameters** - soft_bits - - puncture_pattern - - erase_value - Returns #### **Examples** This example uses the following puncture matrix: $$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$ The upper row operates on the outputs for the G_1 polynomial and the lower row operates on the outputs of the G_2 polynomial. ``` >>> import numpy as np >>> from sk_dsp_comm.fec_conv import fec_conv >>> cc = fec_conv(('101','111')) >>> x = np.array([0, 0, 1, 1, 1, 0, 0, 0, 0, 0]) >>> state = '00' >>> y, state = cc.conv_encoder(x, state) >>> yp = cc.puncture(y, ('110','101')) >>> cc.depuncture(yp, ('110', '101'), 1) array([0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1., 0., 1., 1., 0., 1., 1., 0. ``` puncture (code_bits, puncture_pattern=('110', '101')) Apply puncturing to the serial bits produced by convolutionally encoding. #### **Parameters** - code bits - - puncture_pattern - #### Returns . fec conv 115 This example uses the following puncture matrix: $$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$ The upper row operates on the outputs for the G_1 polynomial and the lower row operates on the outputs of the G_2 polynomial. ``` >>> import numpy as np >>> from sk_dsp_comm.fec_conv import fec_conv >>> cc = fec_conv(('101','111')) >>> x = np.array([0, 0, 1, 1, 1, 0, 0, 0, 0, 0]) >>> state = '00' >>> y, state = cc.conv_encoder(x, state) >>> cc.puncture(y, ('110','101')) array([0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 0.]) ``` # $traceback_plot(fsize=(6, 4))$ Plots a path of the possible last 4 states. #### **Parameters** **fsize** [Plot size for matplotlib.] # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm.fec_conv import fec_conv >>> from sk_dsp_comm import digitalcom as dc >>> import numpy as np >>> cc = fec_conv() >>> x = np.random.randint(0,2,100) >>> state = '00' >>> y,state = cc.conv_encoder(x,state) >>> # Add channel noise to bits translated to +1/-1 >>> yn = dc.cpx_AWGN(2*y-1,5,1) # SNR = 5 dB >>> # Translate noisy +1/-1 bits to soft values on [0,7] >>> yn = (yn.real+1)/2*7 >>> z = cc.viterbi_decoder(yn) >>> cc.traceback_plot() >>> plt.show() ``` #### trellis_plot (fsize=(6, 4)) Plots a trellis diagram of the possible state transitions. ### **Parameters** fsize [Plot size for matplotlib.] ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm.fec_conv import fec_conv >>> cc = fec_conv() >>> cc.trellis_plot() >>> plt.show() ``` viterbi_decoder (x, metric_type='soft', quant_level=3) A method which performs Viterbi decoding of noisy bit stream, taking as input soft bit values centered on +/-1 and returning hard decision 0/1 bits. #### **Parameters** x: Received noisy bit values centered on +/-1 at one sample per bit **metric_type:** 'hard' - Hard decision metric. Expects binary or 0/1 input values. 'unquant' - unquantized soft decision decoding. Expects +/-1 input values. 'soft' - soft decision decoding. quant_level: The quantization level for soft decoding. Expected input values between 0 and 2^quant_level-1. 0 represents the most confident 0 and 2^quant_level-1 represents the most confident 1. Only used for 'soft' metric type. #### **Returns** y: Decoded 0/1 bit stream . fec_conv 117 ``` >>> import numpy as np >>> from numpy.random import randint >>> import sk_dsp_comm.fec_conv as fec >>> import sk_dsp_comm.digitalcom as dc >>> import matplotlib.pyplot as plt >>> # Soft decision rate 1/2 simulation >>> N_bits_per_frame = 10000 >>> EbN0 = 4 >>> total_bit_errors = 0 >>> total_bit_count = 0 >>> cc1 = fec.fec_conv(('11101','10011'),25) >>> # Encode with shift register starting state of '0000' >>> state = '0000' >>> while total_bit_errors < 100: # Create 100000 random 0/1 bits >>> x = randint(0,2,N_bits_per_frame) >>> >>> y, state = cc1.conv_encoder(x, state) >>> # Add channel noise to bits, include antipodal level shift to [-1,1] yn_soft = dc.cpx_AWGN(2*y-1,EbN0-3,1) # Channel SNR is 3 dB less for_ >>> ⇔rate 1/2 >>> yn_hard = ((np.sign(yn_soft.real)+1)/2).astype(int) z = cc1.viterbi_decoder(yn_hard, 'hard') >>> >>> # Count bit errors >>> bit_count, bit_errors = dc.bit_errors(x,z) >>> total_bit_errors += bit_errors >>> total_bit_count += bit_count print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' % >>> (total_bit_count, total_bit_errors, total_bit_ (continues on next page) →errors/total_bit_count)) ``` (continued from previous page) ``` >>> # Consider the trellis traceback after the sim completes >>> ccl.traceback_plot() >>> plt.show() ``` ``` >>> # Compare a collection of simulation results with soft decision >>> # bounds >>> SNRdB = np.arange(0,12,.1) >>> Pb_uc = fec.conv_Pb_bound(1/3,7,[4, 12, 20, 72, 225],SNRdB,2) >>> Pb_s_third_3 = fec.conv_Pb_bound(1/3,8,[3, 0, 15],SNRdB,1) >>> Pb_s_third_4 = fec.conv_Pb_bound(1/3,10,[6, 0, 6, 0],SNRdB,1) >>> Pb_s_third_5 = fec.conv_Pb_bound(1/3,12,[12, 0, 12, 0, 56],SNRdB,1) >>> Pb_s_third_6 = fec.conv_Pb_bound(1/3,13,[1, 8, 26, 20, 19, 62],SNRdB,1) >>> Pb_s_third_7 = fec.conv_Pb_bound(1/3,14,[1, 0, 20, 0, 53, 0, 184],SNRdB,1) >>> Pb_s_third_8 = fec.conv_Pb_bound(1/3,16,[1, 0, 24, 0, 113, 0, 287, 0], $\to SNRdB,1) >>> Pb_s_half = fec.conv_Pb_bound(1/2,7,[4, 12, 20, 72, 225],SNRdB,1) ``` (continues on next page) . fec_conv 119 (continued from previous page) ``` >>> plt.figure(figsize=(5,5)) >>> plt.semilogy(SNRdB,Pb_uc) >>> plt.semilogy(SNRdB,Pb_s_third_3,'--') >>> plt.semilogy(SNRdB,Pb_s_third_4,'--') >>> plt.semilogy(SNRdB,Pb_s_third_5,'g') >>> plt.semilogy(SNRdB,Pb_s_third_6,'--') >>> plt.semilogy(SNRdB,Pb_s_third_7,'--') >>> plt.semilogy(SNRdB,Pb_s_third_8,'--') >>> plt.semilogy([0,1,2,3,4,5],[9.08e-02,2.73e-02,6.52e-03, 8.94e-04,8.54e-05,5e-6],'gs') >>> plt.axis([0,12,1e-7,1e0]) >>> plt.title(r'Soft Decision Rate 1/2 Coding Measurements') >>> plt.xlabel(r'E_b/N_0 (dB)') >>> plt.ylabel(r'Symbol Error Probability') 'R=1/3,_ >>> plt.legend(('Uncoded BPSK', 'R=1/3, K=3, Soft', \hookrightarrowK=4, Soft', 'R=1/3, K=5, Soft', 'R=1/3, K=6, Soft', 'R=1/3, 'R=1/3, K=8, Soft', 'R=1/3, K=5, Sim', \rightarrow K=7, Soft', 'Simulation'), loc='upper right') >>> plt.grid(); >>> plt.show() ``` ``` >>> # Hard decision rate 1/3 simulation >>> N_bits_per_frame = 10000 >>> EbN0 = 3 >>> total_bit_errors = 0 >>> total_bit_count = 0 >>> cc2 = fec.fec_conv(('111111','11011','10101'),25) >>> # Encode with shift register starting state of '0000' >>> state = '0000' >>> while total_bit_errors < 100: >>> # Create 100000 random 0/1 bits >>> x = randint(0,2,N_bits_per_frame) >>> v, state = cc2.conv_encoder(x, state) >>> # Add channel noise to bits, include antipodal level shift to [-1,1] yn_soft = dc.cpx_AWGN(2*y-1,EbN0-10*np.log10(3),1) # Channel SNR is_ →10*log10(3) dB less yn_hard = ((np.sign(yn_soft.real)+1)/2).astype(int) >>> z = cc2.viterbi_decoder(yn_hard.real, 'hard') >>> >>> # Count bit errors >>> bit_count, bit_errors = dc.bit_errors(x,z) total_bit_errors += bit_errors >>> >>> total_bit_count += bit_count >>> print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' % (total_bit_count, total_bit_errors, total_bit_ →errors/total_bit_count)) >>> print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' % total_bit_errors/total_ →bit_count)) Rate 1/3 Object kmax = 0, taumax = 0 Bits Received = 9976, Bit errors = 251, BEP = 2.52e-02 ************ Bits Received = 9976, Bit errors = 251, BEP = 2.52e-02 ``` ``` >>> # Compare a collection of simulation results with hard decision >>> # bounds >>> SNRdB = np.arange(0,12,.1) >>> Pb_uc = fec.conv_Pb_bound(1/3,7,[4, 12,
20, 72, 225],SNRdB,2) >>> Pb_s_third_3_hard = fec.conv_Pb_bound(1/3,8,[3, 0, 15, 0, 58, 0, 201, 0], \hookrightarrowSNRdB, 0) >>> Pb_s_third_5_hard = fec.conv_Pb_bound(1/3,12,[12, 0, 12, 0, 56, 0, 320,__ \rightarrow 0], SNRdB, 0) >>> Pb_s_third_7_hard = fec.conv_Pb_bound(1/3,14,[1, 0, 20, 0, 53, 0, 184], →SNRdB, ()) >>> Pb_s_third_5_hard_sim = np.array([8.94e-04,1.11e-04,8.73e-06]) >>> plt.figure(figsize=(5,5)) >>> plt.semilogy(SNRdB,Pb_uc) >>> plt.semilogy(SNRdB,Pb_s_third_3_hard,'r--') >>> plt.semilogy(SNRdB,Pb_s_third_5_hard,'g--') >>> plt.semilogy(SNRdB,Pb_s_third_7_hard,'k--') >>> plt.semilogy(np.array([5,6,7]),Pb_s_third_5_hard_sim,'sg') >>> plt.axis([0,12,1e-7,1e0]) >>> plt.title(r'Hard Decision Rate 1/3 Coding Measurements') >>> plt.xlabel(r'E_b/N_0 (dB)') >>> plt.ylabel(r'Symbol Error Probability') 'R=1/3,_ >>> plt.legend(('Uncoded BPSK', 'R=1/3, K=3, Hard', \hookrightarrowK=5, Hard', 'R=1/3, K=7, Hard',), loc='upper right') (continues on next page) ``` . fec conv (continued from previous page) ``` >>> plt.grid(); >>> plt.show() ``` ``` >>> # Show the traceback for the rate 1/3 hard decision case >>> cc2.traceback_plot() ``` ``` sk_dsp_comm.fec_conv.hard_Pk(k, R, SNR) ``` Calculates Pk as found in Ziemer & Peterson eq. 7-12, p.505 Mark Wickert and Andrew Smit 2018 $sk_dsp_comm.fec_conv.soft_Pk(k, R, SNR)$ Calculates Pk as found in Ziemer & Peterson eq. 7-13, p.505 Mark Wickert November 2014 class sk_dsp_comm.fec_conv.trellis_branches(Ns) A structure to hold the trellis states, bits, and input values for both '1' and '0' transitions. Ns is the number of states = $2^{(K-1)}$. class sk_dsp_comm.fec_conv.trellis_nodes(Ns) A structure to hold the trellis from nodes and to nodes. Ns is the number of states = $2^{(K-1)}$. class sk_dsp_comm.fec_conv.trellis_paths(Ns, D) A structure to hold the trellis paths in terms of traceback_states, cumulative_metrics, and traceback_bits. A full decision depth history of all this infomation is not essential, but does allow the graphical depiction created by the method traceback_plot(). Ns is the number of states = $2^{(K-1)}$ and D is the decision depth. As a rule, D should be about 5 times K. # fir_design_helper Basic Linear Phase Digital Filter Design Helper Copyright (c) March 2017, Mark Wickert All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY . fir design helper 123 WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. ``` sk_dsp_comm.fir_design_helper.bandpass_order(f_stop1, f_pass1, f_pass2, f_stop2, \\ dpass_dB, dstop_dB, fsamp=1) ``` Optimal FIR (equal ripple) Bandpass Order Determination Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002. Journal paper reference: F. Mintzer & B. Liu, Practical Design Rules for Optimum FIR Bandpass Digital Filters, IEEE Transactions on Acoustics and Speech, pp. 204-206, April, 1979. ``` sk_dsp_comm.fir_design_helper.bandstop_order(\textit{f_stop1}, \quad \textit{f_pass1}, \quad \textit{f_pass2}, \quad \textit{f_stop2}, \\ \textit{dpass_dB}, \textit{dstop_dB}, \textit{fsamp=1}) ``` Optimal FIR (equal ripple) Bandstop Order Determination Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002. Journal paper reference: F. Mintzer & B. Liu, Practical Design Rules for Optimum FIR Bandpass Digital Filters, IEEE Transactions on Acoustics and Speech, pp. 204-206, April, 1979. ``` sk_dsp_comm.fir_design_helper.fir_remez_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_pass, d_stop, fs=1.0, N_bump=5, status=True) ``` Design an FIR bandpass filter using remez with order determination. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 ``` sk_dsp_comm.fir_design_helper.fir_remez_bsf(f_pass1, f_stop1, f_stop2, f_pass2, d_pass, d_stop, fs=1.0, N_bump=5, status=True) ``` Design an FIR bandstop filter using remez with order determination. The filter order is determined based on f_pass1 Hz, f_stop1 Hz, f_stop2 Hz, f_pass2 Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 ``` sk_dsp_comm.fir_design_helper.fir_remez_hpf(f_stop, f_pass, d_pass, d_stop, fs=1.0, N bump=5.status=True) ``` Design an FIR highpass filter using remez with order determination. The filter order is determined based on f_pass Hz, fstop Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 ``` sk_dsp_comm.fir_design_helper.fir_remez_lpf(f_pass, f_stop, d_pass, d_stop, fs=1.0, N_bump=5.status=True) ``` Design an FIR lowpass filter using remez with order determination. The filter order is determined based on f_pass Hz, fstop Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 ``` sk_dsp_comm.fir_design_helper.firwin_bpf (N_taps, f1, f2, fs=1.0, pass_zero=False) ``` Design a windowed FIR bandpass filter in terms of passband critical frequencies f1 < f2 in Hz relative to sampling rate fs in Hz. The number of taps must be provided. Mark Wickert October 2016 ``` sk_dsp_comm.fir_design_helper.firwin_kaiser_bpf (f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs=1.0, N_bump=0, status=True) ``` Design an FIR bandpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired stopband attenuation d_stop in dB for both stopbands, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation. Mark Wickert October 2016 ``` sk_dsp_comm.fir_design_helper.firwin_kaiser_bsf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs=1.0, N_bump=0, status=True) ``` tus=True) Design an FIR bandstop filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired stopband attenuation d_stop in dB for both stopbands, all relative to a sampling rate of fs Hz. Note: The passband ripple cannot be set independent of the stopband attenuation. Note: The filter order is forced to be even (odd number of taps) so there is a center tap that can be used to form 1 - H_BPF. Mark Wickert October 2016 ``` sk_dsp_comm.fir_design_helper.firwin_kaiser_hpf(f_stop, f_pass, d_stop, fs=1.0, N bump=0, status=True) ``` Design an FIR highpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation. Mark Wickert October 2016 ``` sk_dsp_comm.fir_design_helper.firwin_kaiser_lpf(f_pass, f_stop, d_stop, fs=1.0, N bump=0, status=True) ``` Design an FIR lowpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation. Mark Wickert October 2016 ``` sk_dsp_comm.fir_design_helper.firwin_lpf(N_taps, fc, fs=1.0) ``` Design a windowed FIR lowpass filter in terms of passband critical frequencies f1 < f2 in Hz relative to sampling rate fs in Hz. The number of taps must be provided. Mark Wickert October 2016 ``` sk_dsp_comm.fir_design_helper.freqz_resp_list(b, a=array([1]), mode='dB', fs=1.0, Npts=1024, fsize=(6,4)) ``` A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib ``` freq_resp(self,mode = 'dB',Npts = 1024) ``` A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib ``` freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) ``` b = ndarray of numerator coefficients a = ndarray of denominator coefficients mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz Npts = number of points to plot; default is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 . fir design helper 125 ```
sk_dsp_comm.fir_design_helper.lowpass_order(f_pass, f_stop, dpass_dB, dstop_dB, fsamp=1) ``` Optimal FIR (equal ripple) Lowpass Order Determination Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002. Journal paper reference: Herriman et al., Practical Design Rules for Optimum Finite Imulse Response Digitl Filters, Bell Syst. Tech. J., vol 52, pp. 769-799, July-Aug., 1973.IEEE, 1973. # iir_design_helper Basic IIR Bilinear Transform-Based Digital Filter Design Helper Copyright (c) March 2017, Mark Wickert All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. ``` sk_dsp_comm.iir_design_helper.IIR_bpf (f_stop1, f_pass1, f_pass2, f_stop2, Ripple_pass, At- ten_stop, fs=1.0, ftype='butter', status=True') Design an IIR bandpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, ``` Design an IIR bandpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. #### **Parameters** **f_stop1** [ndarray of the numerator coefficients] **f pass** [ndarray of the denominator coefficients] Ripple_pass: Atten_stop: fs [sampling rate in Hz] ftype [Analog prototype from 'butter' 'cheby1', 'cheby2',] 'ellip', and 'bessel' #### Returns - **b** [ndarray of the numerator coefficients] - **a** [ndarray of the denominator coefficients] sos [2D ndarray of second-order section coefficients] # **Examples** ``` >>> fs = 48000 >>> f_pass = 8000 >>> f_stop = 5000 >>> b_but,a_but,sos_but = IIR_hpf(f_stop,f_pass,0.5,60,fs,'butter') >>> b_cheb1,a_cheb1,sos_cheb1 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby1') >>> b_cheb2,a_cheb2,sos_cheb2 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby2') >>> b_elli,a_elli,sos_elli = IIR_hpf(f_stop,f_pass,0.5,60,fs,'ellip') ``` #### Mark Wickert October 2016 ``` sk_dsp_comm.iir_design_helper.IIR_bsf (f_pass1, f_stop1, f_stop2, f_pass2, Ripple_pass, Atten_stop, fs=1.0, ftype='butter', status=True) ``` Design an IIR bandstop filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Mark Wickert October 2016 ``` sk_dsp_comm.iir_design_helper.IIR_hpf(f_stop, f_pass, Ripple_pass, Atten_stop, fs=1.0, ftype='butter', status=True) ``` Design an IIR highpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f stop Hz, and the desired stopband attenuation d stop in dB, all relative to a sampling rate of fs Hz. #### **Parameters** f stop: f pass: Ripple_pass: Atten_stop: fs [sampling rate in Hz] ftype [Analog prototype from 'butter' 'cheby1', 'cheby2',] 'ellip', and 'bessel' #### Returns - **b** [ndarray of the numerator coefficients] - **a** [ndarray of the denominator coefficients] - sos [2D ndarray of second-order section coefficients] # **Examples** ``` >>> fs = 48000 >>> f_pass = 8000 >>> f_stop = 5000 >>> b_but,a_but,sos_but = IIR_hpf(f_stop,f_pass,0.5,60,fs,'butter') >>> b_cheb1,a_cheb1,sos_cheb1 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby1') >>> b_cheb2,a_cheb2,sos_cheb2 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby2') >>> b_elli,a_elli,sos_elli = IIR_hpf(f_stop,f_pass,0.5,60,fs,'ellip') ``` Mark Wickert October 2016 . iir design helper 127 Design an IIR lowpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. #### **Parameters** ``` f_pass [Passband critical frequency in Hz] ``` **f stop** [Stopband critical frequency in Hz] **Ripple_pass** [Filter gain in dB at f_pass] **Atten_stop** [Filter attenuation in dB at f_stop] fs [Sampling rate in Hz] ftype [Analog prototype from 'butter' 'cheby1', 'cheby2',] 'ellip', and 'bessel' #### Returns - **b** [ndarray of the numerator coefficients] - **a** [ndarray of the denominator coefficients] - sos [2D ndarray of second-order section coefficients] #### **Notes** Additionally a text string telling the user the filter order is written to the console, e.g., IIR cheby1 order = 8. # **Examples** ``` >>> fs = 48000 >>> f_pass = 5000 >>> f_stop = 8000 >>> b_but,a_but,sos_but = IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter') >>> b_cheb1,a_cheb1,sos_cheb1 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1') >>> b_cheb2,a_cheb2,sos_cheb2 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2') >>> b_elli,a_elli,sos_elli = IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip') ``` Mark Wickert October 2016 ``` sk_dsp_comm.iir_design_helper.freqz_cas(sos, w) ``` Cascade frequency response Mark Wickert October 2016 ``` sk_dsp_comm.iir_design_helper.freqz_resp_cas_list (sos, mode='dB', fs=1.0, Npts=1024, fsize=(6.4)) ``` A method for displaying cascade digital filter form frequency response magnitude, phase, and group delay. A plot is produced using matplotlib ``` freq_resp(self,mode = 'dB',Npts = 1024) ``` A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib ``` freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) ``` b = ndarray of numerator coefficients a = ndarray of denominator coefficents ``` mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay t' in sec, all versus frequency in Hz Npts = number of points to plot; default is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 sk_dsp_comm.iir_design_helper.freqz_resp_list(b, a=array([1]), mode='dB', fs=1.0, Npts = 1024, fsize = (6, 4) A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) b = ndarray of numerator coefficients a = ndarray of denominator coefficents mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay t' in sec, all versus frequency in Hz Npts = number of points to plot; default is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 sk_dsp_comm.iir_design_helper.sos_cascade(sos1, sos2) Mark Wickert October 2016 sk_dsp_comm.iir_design_helper.sos_zplane(sos, auto_scale=True, size=2, tol=0.001) Create an z-plane pole-zero plot. ``` Create an z-plane pole-zero plot using the numerator and denominator z-domain system function coefficient ndarrays b and a respectively. Assume descending powers of z. #### **Parameters** ``` sos [ndarray of the sos coefficients] auto_scale [bool (default True)] size [plot radius maximum when scale = False] ``` #### Returns (M,N) [tuple of zero and pole counts + plot window] . iir design helper 129 #### **Notes** This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via the function signal.unique_roots. # **Examples** ``` >>> # Here the plot is generated using auto_scale >>> sos_zplane(sos) >>> # Here the plot is generated using manual scaling >>> sos_zplane(sos,False,1.5) ``` ``` sk_dsp_comm.iir_design_helper.unique_cpx_roots(rlist, tol=0.001) ``` The average of the root values is used when multiplicity is greater than one. Mark Wickert October 2016 # multirate_helper Multirate help for building interpolation and decimation systems Copyright (c) March 2017, Mark Wickert All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. ``` sk_dsp_comm.multirate_helper.freqz_resp (b, a=[1], mode='dB', fs=1.0, Npts=1024, fsize=(6, 4)) ``` A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib ``` freq_resp(self,mode = 'dB',Npts = 1024) ``` A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib ``` freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) ``` b = ndarray of numerator coefficients a = ndarray of denominator coefficents mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz Npts = number of points to plot; defult is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 #### class sk_dsp_comm.multirate_helper.multirate_FIR(b) A simple class for encapsulating FIR filtering, or FIR upsample/filter, or FIR filter/downsample operations used in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated. Frequency response and the pole zero plot can also be plotted using supplied class methods. Mark Wickert March 2017 #### **Methods** | dn(x[, M_change]) | Downsample and filter the signal | |--|--| | filter(x) | Filter the signal | | up(x[, L_change]) | Upsample and filter the signal | | zplane([auto_scale, size, detect_mult, tol]) | Plot the poles and zeros of the FIR filter in the z- | | | plane | freq_resp ``` dn(x, M_change=12) ``` Downsample and filter the signal # filter(x) Filter the signal freq_resp (mode='dB', fs=8000, ylim=[-100, 2]) up(x, L change=12) Upsample and filter the signal zplane (auto_scale=True, size=2, detect_mult=True, tol=0.001) Plot the poles and zeros of the FIR filter in the z-plane ``` \textbf{class} \ \, \texttt{sk_dsp_comm.multirate_helper.multirate_IIR} \, (sos) ``` A simple class for encapsulating IIR filtering, or IIR upsample/ filter, or IIR filter/downsample operations used in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated. Frequency response and the pole zero plot can also be plotted using supplied class methods. For added robustness to floating point quantization all filtering is done using the scipy.signal cascade of second-order sections filter method y = sosfilter(sos,x). Mark Wickert March 2017 . multirate helper 131 #### **Methods** | dn(x[, M_change]) | Downsample and filter the signal | |--|--| | filter(x) | Filter the signal using second-order sections | | freq_resp([mode, fs, ylim]) | Frequency response plot | | up(x[, L_change]) | Upsample and filter the signal | | zplane([auto_scale, size, detect_mult, tol]) | Plot the poles and zeros of the FIR filter in the z- | | | plane | $dn(x, M_change=12)$ Downsample and filter the signal filter(x) Filter the signal using second-order sections freq_resp (mode='dB', fs=8000, ylim=[-100, 2]) Frequency response plot $up(x, L_change=12)$ Upsample and filter the signal zplane (auto_scale=True, size=2, detect_mult=True, tol=0.001) Plot the poles and zeros of the FIR filter in the z-plane class sk_dsp_comm.multirate_helper.rate_change(M_change=12, fcutoff=0.9, $N_{filt_order=8}$, ftype='butter') A simple class for encapsulating the upsample/filter and filter/downsample operations used in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated. Mark Wickert February 2015 #### Methods | dn(x) | Downsample and filter the signal | |-------|----------------------------------| | up(x) | Upsample and filter the signal | dn(x) Downsample and filter the signal $\mathbf{up}(x)$ Upsample and filter the signal # pyaudio_helper Support functions and classes for using PyAudio for real-time DSP Copyright (c) September 2017, Mark Wickert, Andrew Smit All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. Real-time DSP one channel input/output audio streaming Use PyAudio to explore real-time audio DSP using Python Mark Wickert, Andrew Smit September 2017 #### **Methods** | DSP_callback_tic() | Add new tic time to the DSP_tic list. | | |--|--|--| | DSP_callback_toc() | Add new toc time to the DSP_toc list. | | | DSP_capture_add_samples(new_data) | Append new samples to the data_capture array and | | | | increment the sample counter If length reaches Tcap- | | | | ture, then the newest samples will be kept. | | | DSP_capture_add_samples_stereo() | Append new samples to the data_capture_left array | | | | and the data_capture_right array and increment the | | | | sample counter. | | | cb_active_plot(start_ms, stop_ms[, | Plot timing information of time spent in the callback. | | | line_color]) | | | | get_LR(in_data) | Splits incoming packed stereo data into separate left | | | | and right channels and returns an array of left sam- | | | | ples and an array of right samples | | | in_out_check() | Checks the input and output to see if they are valid | | | <pre>interactive_stream([Tsec, numChan])</pre> | Stream audio with start and stop radio buttons | | | pack_LR(left_out, right_out) | Packs separate left and right channel data into one | | | | array to output and returns the output. | | | stop() | Call to stop streaming | | | stream([Tsec, numChan]) | Stream audio using callback | | | stream_stats() | Display basic statistics of callback execution: ideal | | | | period between callbacks, average measured period | | | | between callbacks, and average time spent in the | | | | callback. | | | thread_stream([Tsec, numChan]) | Stream audio in a thread using callback. | | | | | | interaction . pyaudio helper 133 #### DSP callback tic() Add new tic time to the DSP tic list. Will not be called if Tcapture = 0. #### DSP callback toc() Add new toc time to the DSP_toc list. Will not be called if Tcapture = 0. #### DSP_capture_add_samples (new_data) Append new samples to the data_capture array and increment the sample counter If length reaches Tcapture, then the newest samples will be kept. If Tcapture = 0 then new values are not appended to the data_capture array. #### DSP_capture_add_samples_stereo (new_data_left, new_data_right) Append new samples to the data_capture_left array and the data_capture_right array and increment the sample counter. If length reaches Tcapture, then the newest samples will be kept. If Tcapture = 0 then new values are not appended to the data_capture array. # cb_active_plot (start_ms, stop_ms, line_color='b') Plot timing information of time spent in the callback. This is similar to what a logic analyzer provides when probing an interrupt. cb active plot(start ms,stop ms,line color='b') #### get_LR (in_data) Splits incoming packed stereo data into separate left and right channels and returns an array of left samples and an array of right samples #### **Parameters** **in_data** [input data from the streaming object in the callback function.] #### Returns left_in [array of incoming left channel samples] right_in [array of incoming right channel samples] # in out check() Checks the input and output to see if they are valid #### interactive_stream(Tsec=2, numChan=1) Stream audio with start and stop radio buttons Interactive stream is designed for streaming audio through this object using a callback function. This stream is threaded, so it can be used with ipywidgets. Click on the "Start Streaming" button to start streaming and click on "Stop Streaming" button to stop streaming. #### **Parameters** **Tsec** [stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite] mode. When in infinite mode, the "Stop Streaming" radio button or Tsec.stop() can be used to stop
the stream. **numChan** [number of channels. Use 1 for mono and 2 for stereo.] #### pack_LR (left_out, right_out) Packs separate left and right channel data into one array to output and returns the output. # **Parameters** left_out [left channel array of samples going to output] right_out [right channel array of samples going to output] #### Returns **out** [packed left and right channel array of samples] #### stop() Call to stop streaming #### stream (Tsec=2, numChan=1) Stream audio using callback #### **Parameters** **Tsec** [stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite] mode. When in infinite mode, Tsec.stop() can be used to stop the stream. **numChan** [number of channels. Use 1 for mono and 2 for stereo.] ``` stream_stats() ``` Display basic statistics of callback execution: ideal period between callbacks, average measured period between callbacks, and average time spent in the callback. ``` thread stream(Tsec=2, numChan=1) ``` Stream audio in a thread using callback. The stream is threaded, so widgets can be used simultaneously during stream. #### **Parameters** **Tsec** [stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite] mode. When in infinite mode, Tsec.stop() can be used to stop the stream. **numChan** [number of channels. Use 1 for mono and 2 for stereo.] ``` sk_dsp_comm.pyaudio_helper.available_devices() ``` Display available input and output audio devices along with their port indices. **Returns** Dictionary whose keys are the device index, the number of inputs and outputs, and their names. #### Return type dict ``` class sk_dsp_comm.pyaudio_helper.loop_audio(x, start_offset=0) ``` Loop signal ndarray during playback. Optionally start_offset samples into the array. Array may be 1D (one channel) or 2D (two channel, Nsamps by 2) Mark Wickert July 2017 #### Methods get samples get_samples (frame_count) . pyaudio_helper 135 # rtlsdr helper Support functions for the RTL-SDR using pyrtlsdr Copyright (c) July 2017, Mark Wickert All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. ``` class sk_dsp_comm.rtlsdr_helper.RTLSDR_stream(rtl_in=0, rtl_fs=2400000.0, fc=103900000.0, gain=40, rtl_buffer_size=32768, audio_out=1, audio_buffsize=4096, audio_fs=48000) ``` Class used to set up an RTLSDR stream object #### **Methods** | clear_buffer() | Clears the circular buffer used by the audio sink | |---|--| | clear_logs() | Used in Mono FM Receiver example to clear widget | | | logs | | get_bandwidth() | returns the bandwidth of the SDR | | <pre>get_buffer()</pre> | Returns the data_sink buffer at the current index | | <pre>get_center_freq()</pre> | Returns the center frequency of the SDR | | get_data_out_async() | This method asynchronously returns data from the | | | data_sink buffer when it is full. | | <pre>get_gain()</pre> | Returns the receiver gain of the SDR | | <pre>get_processed_stage1_frame()</pre> | Async method that can be used to get a frame of dec- | | | imated data after the callback. | | <pre>get_rf_frame()</pre> | Async method that can be used to get a frame of in- | | | coming RF samples. | | <pre>get_sample_rate()</pre> | Returns the sample rate of the SDR | | <pre>get_stage1_frame()</pre> | Async method that can be used to get a frame of dec- | | | imated data after the stage 1 decimation filter. | | | continues on next page | Table 6 – continued from previous page | Table 6 – continued from previous page | | | | |--|--|--|--| | <pre>get_stage2_frame()</pre> | Async method that can be used to get a frame of dec- | | | | | imated data after the stage 2 decimation filter. | | | | <pre>interactive_FM_Rx([fc, gain, audio_out,])</pre> | Sets up interactive mono FM example | | | | plot_processed_stage1([NFFT, FC, w, h]) | Async method that can be used to plot the PSD of a | | | | | frame of decimated and processed samples from the | | | | | SDR. | | | | <pre>plot_rf([NFFT, w, h])</pre> | Async method that can be used to plot the PSD of a | | | | | frame of incoming samples from the SDR. | | | | plot_stage1([NFFT, w, h]) | Async method that can be used to plot the PSD of a | | | | proc_seager([mr1, ", m]) | frame of decimated samples from the SDR. | | | | plot_stage2([NFFT, FC, w, h]) | Async method that can be used to plot the PSD of a | | | | prot_stagez([MT1,1C, w, n]) | frame of data after the stage 2 decimator. | | | | roact data out guouo() | Clears data_sink queue | | | | reset_data_out_queue() | | | | | | TThis method can be used to instantiate a spectrum | | | |]) | analyzer after the callback during a stream. | | | | run_plot_rf_stream([NFFT, refresh_rate, | This method can be used to instantiate a spectrum | | | |]) | analyzer of the RF input during a stream. | | | | run_plot_stage1_stream([NFFT, re- | This method can be used to instantiate a spectrum | | | | fresh_rate,]) | analyzer after stage 1 during a stream. | | | | run_plot_stage2_stream([NFFT, re- | This method can be used to instantiate a spectrum | | | | fresh_rate,]) | analyzer after the callback during a stream. | | | | run_user_stream(callback, M1, M2[, b,]) | Starts a user stream. | | | | set_NFFT(NFFT) | Sets the FFT size for any running spectrum analyzer | | | | set_audio_buffsize(audio_buffsize) | Sets the buffer size used by PyAudio to consume | | | | | frames processed audio frames from the circular | | | | | buffer. | | | | set_audio_fs(audio_fs) | Sets the audio sample rate. | | | | set_audio_gain(gain) | Sets the audio gain value used to scale the PyAudio | | | | 500_uuu10_gum) | volume. | | | | set_audio_gain_db(gain) | Sets the audio gain value (in dB) used to scale the | | | | bee_aaaro_garn_ab(gam) | audio_sink output volume | | | | set_audio_in(audio_in) | Selects the audio input device. | | | | set_audio_out(audio_out) | | | | | | Selects the audio output device. | | | | set_fc(fc) | Sets tuning center frequency value (in Hz) on the | | | | | SDR | | | | set_fc_mhz(fc) | Sets tuning center frequency value (in MHz) on the | | | | - (6) | SDR | | | | set_fs(fs) | Sets the sample rate (in samples/second) to the SDR | | | | | This should generally be left at 2.4 Msps. | | | | set_gain(gain) | Sets receiver gain value (in dB) on the SDR | | | | <pre>set_refresh_rate(refresh_rate)</pre> | Sets the refresh_rate (in Hz) of any running spectrum | | | | | analyzer | | | | set_rtl_buffer_size(rtl_buffer_size) | Sets the circular buffer size used by the audio_sink | | | | | and the data_sink. | | | | set_stage1_coeffs(b[, a, zi]) | Can be used to set the stage 1 decimation filter coef- | | | | - · · · · · · · · · · · · · · · · · · · | ficients. | | | | set_stage2_coeffs(bb[, aa, zi]) | Can be used to set the stage 2 decimation filter coef- | | | | J (1) | ficients. | | | | show_logs() | Used in Mono FM Receiver example to show logs | | | | | inside of a widget | | | | ston | Stops a running stream. | | | | stop() | | | | | | continues on next page | | | . rtlsdr_helper 137 | Iabla | L: | aantiniiad | trom | Drovious Dogo | |-------------------|----|------------|-------------|---------------| | iaun e | - | COHIHHIDEO | 11 ()1 1 1 | previous page | | | | | | | | stop_all() | Stops any running spectrum analyzer and stops | |------------------------------|--| | | streaming | | stop_all_plots() | Stops any running spectrum analyzer | | stop_processed_stage1_plot() | Stops updating a callback spectrum analyzer instance | | stop_rf_plot() | Stops updating an RF spectrum analyzer instance | | stop_stage1_plot() | Stops updating a stage 1 spectrum analyzer instance | | stop_stage2_plot() | Stops updating a stage 2 spectrum analyzer instance | | toggle_invert() | Toggles between black and white background of a | | | running spectrum analyzer | #### clear_buffer() Clears the circular buffer used by the audio sink #### clear_logs() Used in Mono FM Receiver example to clear widget logs #### get_bandwidth() returns the bandwidth of the SDR #### get buffer() Returns the data sink buffer at the current index #### get_center_freq() Returns the center frequency of the SDR #### async get_data_out_async() This method asynchronously returns data from the data_sink buffer when it is full. This is used in the data_sink mode (audio_sink=False). The following example shows how to continuously stream data and handle the buffer when it
is full. The buffer will automatically get rewritten whenever it runs out of space, so the returned buffer must be handled whenever it is filled. #### get_gain() Returns the receiver gain of the SDR # async get_processed_stage1_frame() Async method that can be used to get a frame of decimated data after the callback. Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback, 10,5) >>> callback_data_frame = await sdr_stream.get_stage1_frame() #### async get rf frame() Async method that can be used to get a frame of incoming RF samples. Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> rf_data_frame = await sdr_stream.get_stage1_frame() # get_sample_rate() Returns the sample rate of the SDR # async get_stage1_frame() Async method that can be used to get a frame of decimated data after the stage 1 decimation filter. Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> stage1_data_frame = await sdr_stream.get_stage1_frame() #### async get_stage2_frame() Async method that can be used to get a frame of decimated data after the stage 2 decimation filter. Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> stage2_data_frame = await sdr_stream.get_stage2_frame() ``` \begin{array}{lll} \textbf{interactive_FM_Rx} & (fc=103900000.0, & gain=40, & audio_out=1, & audio_buff size=4096, & audio_fs=48000) \end{array} ``` Sets up interactive mono FM example # async plot_processed_stage1 (NFFT=1024, FC=0, w=6, h=5) Async method that can be used to plot the PSD of a frame of decimated and processed samples from the SDR. This essentially acts as a power spectrum "probe" after the user-defined callback and before the audio_sink or data_sink blocks.1 decimator and before the user-defined callback. Make sure a stream is running before calling this method. This method must be awaited when called. parameters: NFFT: Number of points used in the spectrum plot. Should be 2^N value FC: Frequency offset for plotting w: width of figure h: height of figure Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> await sdr_stream.plot_processed_stage1(1024,0,6,5) This will return a spectrum plot ### async plot_rf (NFFT=1024, w=6, h=5) Async method that can be used to plot the PSD of a frame of incoming samples from the SDR. This essentially acts as a power spectrum "probe" right before the Stage 1 decimator. Make sure a stream is running before calling this method. This method must be awaited when called. parameters: NFFT: Number of points used in the spectrum plot. Should be 2^N value w: width of figure h: height of figure Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> await sdr_stream.plot_rf(1024,6,5) This will return a spectrum plot # async plot_stage1 (NFFT=1024, w=6, h=5) Async method that can be used to plot the PSD of a frame of decimated samples from the SDR. This essentially acts as a power spectrum "probe" after the stage 1 decimator and before the user-defined callback. Make sure a stream is running before calling this method. This method must be awaited when called. parameters: NFFT: Number of points used in the spectrum plot. Should be 2^N value w: width of figure h: height of figure Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> await sdr_stream.plot_stage1(1024,6,5) This will return a spectrum plot ### async plot_stage2 (NFFT=1024, FC=0, w=6, h=5) Async method that can be used to plot the PSD of a frame of data after the stage 2 decimator. This essentially acts as a power spectrum "probe" after the stage2 decimator Make sure a stream is running before calling this method. This method must be awaited when called. parameters: NFFT: Number of points used in the spectrum plot. Should be 2^N value FC: Frequency offset for plotting w: width of figure h: height of figure Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> await sdr_stream.plot_processed_stage1(1024,0,6,5) This will return a spectrum plot #### reset_data_out_queue() Clears data_sink queue . rtlsdr helper 139 #### run_plot_processed_stage1_stream (NFFT=1024, $refresh_rate=2$, invert=True, w=8, h=5) This method can be used to instantiate a spectrum analyzer after the callback during a stream. Call the stop_plot_rf_plot method in order to stop the plot from updating. Only one spectrum analyzer instance my be running at once. This only works when using %pylab widget or %pylab notebook NFFT: fftsize used in plotting refresh_rate: defines how often the spectrum analyzer updates (in Hz) invert: Inverts the background to black when true or leaves it white when false w: width of figure h: height of figure Example: >>> %pylab widget >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback, 10,5) >>> sdr_stream.run_plot_processed_stage1_stream(1024,2,True,8,5) ``` >>> sdr_stream.stop_processed_stage1_plot() >>> sdr_stream.stop() ``` # run_plot_rf_stream (NFFT=1024, refresh_rate=2, invert=True, w=8, h=5) This method can be used to instantiate a spectrum analyzer of the RF input during a stream. Call the stop_plot_rf_plot method in order to stop the plot from updating. Only one spectrum analyzer instance my be running at once. This only works when using %pylab widget or %pylab notebook NFFT: fftsize used in plotting refresh_rate: defines how often the spectrum analyzer updates (in Hz) invert: Inverts the background to black when true or leaves it white when false w: width of figure h: height of figure Example: >>> %pylab widget >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> sdr_stream.run_plot_rf_stream(1024,2,True,8,5) ``` >>> sdr_stream.stop_rf_plot() >>> sdr_stream.stop() ``` #### run_plot_stage1_stream (NFFT=1024, refresh_rate=2, invert=True, w=8, h=5) This method can be used to instantiate a spectrum analyzer after stage 1 during a stream. Call the stop_plot_rf_plot method in order to stop the plot from updating. Only one spectrum analyzer instance my be running at once. This only works when using %pylab widget or %pylab notebook NFFT: fftsize used in plotting refresh_rate: defines how often the spectrum analyzer updates (in Hz) invert: Inverts the background to black when true or leaves it white when false w: width of figure h: height of figure Example: >>> %pylab widget >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> sdr_stream.run_plot_stage1_stream(1024,2,True,8,5) ``` >>> sdr_stream.stop_stage1_plot() >>> sdr_stream.stop() ``` # run_plot_stage2_stream (NFFT=1024, refresh_rate=2, invert=True, w=8, h=5) This method can be used to instantiate a spectrum analyzer after the callback during a stream. Call the stop_plot_rf_plot method in order to stop the plot from updating. Only one spectrum analyzer instance my be running at once. This only works when using %pylab widget or %pylab notebook NFFT: fftsize used in plotting refresh_rate: defines how often the spectrum analyzer updates (in Hz) invert: Inverts the background to black when true or leaves it white when false w: width of figure h: height of figure Example: >>> %pylab widget >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> sdr_stream.run_plot_stage2_stream(1024,2,True,8,5) ``` >>> sdr_stream.stop_stage2_plot() >>> sdr_stream.stop() ``` # run_user_stream(callback, M1, M2, b=False, stage1_ic=False, a=False, bb=False, stage2_ic=False, aa=False, audio_sink=True, user_var=None) Starts a user stream. A user stream follows the flow diagram in the class description. When audio_sink is True, the audio_sink blocks will be used and when audio_sink is False, the data sink block will be used. For any optional parameters set to false, default values will be used for stage 1 or stage 2 filters. The stop() method may be used to stop the stream. ### set_NFFT (NFFT) Sets the FFT size for any running spectrum analyzer ### set_audio_buffsize (audio_buffsize) Sets the buffer size used by PyAudio to consume frames processed audio frames from the circular buffer. ### set_audio_fs (audio_fs) Sets the audio sample rate. When the audio sink is used this should be equal to the radio sample rate (fs) / stage 1 decimation factor / stage 2 decimation factor ### set_audio_gain(gain) Sets the audio gain value used to scale the PyAudio volume. ### set_audio_gain_db (gain) Sets the audio gain value (in dB) used to scale the audio_sink output volume #### set audio in (audio in) Selects the audio input device. This is not used in the class, but should be set to a valid audio input. ### set_audio_out (audio_out) Selects the audio output device. Use sk_dsp_comm.rtlsdr_helper.pah.available_devices() to get device indices. ### $set_fc(fc)$ Sets tuning center frequency value (in Hz) on the SDR ### $set_fc_mhz(fc)$ Sets tuning center frequency value (in MHz) on the SDR # $set_fs(fs)$ Sets the sample rate (in samples/second) to the SDR This should generally be left at 2.4 Msps. The radio can only operate at specific rates. ### set_gain(gain) Sets receiver gain value (in dB) on the SDR ### set_refresh_rate (refresh_rate) Sets the refresh_rate (in Hz) of any running spectrum analyzer # set_rtl_buffer_size(rtl_buffer_size) Sets the circular buffer size used by the audio_sink and the data_sink. When the audio_sink is used, this should be set to a fairly high number (around 2^15). When the data_sink is used, the buffer size can be changed to accommodate the scenario. #### $set_stage1_coeffs(b, a=[1], zi=False)$ Can be used to set the stage 1 decimation filter coefficients. This can be used during an active stream. # set_stage2_coeffs (bb, aa=[1], zi=False) Can be used to set the stage 2 decimation filter coefficients. This can be used during an active stream. #### show logs() Used in Mono FM Receiver example to show logs inside of a widget
stop() Stops a running stream. . rtlsdr helper 141 ``` stop all() Stops any running spectrum analyzer and stops streaming stop_all_plots() Stops any running spectrum analyzer stop processed stage1 plot() Stops updating a callback spectrum analyzer instance stop rf plot() Stops updating an RF spectrum analyzer instance stop_stage1_plot() Stops updating a stage 1 spectrum analyzer instance stop_stage2_plot() Stops updating a stage 2 spectrum analyzer instance toggle_invert() Toggles between black and white background of a running spectrum analyzer sk dsp comm.rtlsdr helper.complex2wav(filename, rate, x) Save a complex signal vector to a way file for compact binary storage of 16-bit signal samples. The way left and right channels are used to save real (I) and imaginary (Q) values. The rate is just a convent way of documenting the original signal sample rate. complex2wav(filename,rate,x) Mark Wickert April 2014 sk_dsp_comm.rtlsdr_helper.discrim(x) function disdata = discrim(x) where x is an angle modulated signal in complex baseband form. Mark Wickert sk_dsp_comm.rtlsdr_helper.fsk_BEP (rx_data, m, flip) Estimate the BEP of the data bits recovered by the RTL-SDR Based FSK Receiver. The reference m-sequence generated in Python was found to produce sequences running in the opposite direction relative to the m-sequences generated by the mbed. To allow error detection the reference m-sequence is flipped. Mark Wickert April 2014 sk_dsp_comm.rtlsdr_helper.mono_FM(x, fs=2400000.0, file_name='test.wav') Decimate complex baseband input by 10 Design 1st decimation lowpass filter (f c = 200 \text{ KHz}) sk_dsp_comm.rtlsdr_helper.pilot_PLL(xr, fq, fs, loop_type, Bn, zeta) Mark Wickert, April 2014 sk_dsp_comm.rtlsdr_helper.sccs_bit_sync(y, Ns) Symbol synchronization algorithm using SCCS y = baseband NRZ data waveform Ns = nominal number of samples per symbol Reworked from ECE 5675 Project Translated from m-code version Mark Wickert April 2014 sk_dsp_comm.rtlsdr_helper.stereo_FM(x, fs=2400000.0, file_name='test.wav') Stereo demod from complex baseband at sampling rate fs. Assume fs is 2400 ksps Mark Wickert July 2017 ``` ``` sk_dsp_comm.rtlsdr_helper.wav2complex(filename) ``` Return a complex signal vector from a wav file that was used to store the real (I) and imaginary (Q) values of a complex signal ndarray. The rate is included as means of recalling the original signal sample rate. fs,x = wav2complex(filename) Mark Wickert April 2014 # sigsys Signals and Systems Function Module Copyright (c) March 2017, Mark Wickert All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. ### **Notes** The primary purpose of this function library is to support the book Signals and Systems for Dummies. Beyond that it should be useful to anyone who wants to use Pylab for general signals and systems modeling and simulation. There is a good collection of digital communication simulation primitives included in the library. More enhancements are planned over time. The formatted docstrings for the library follow. Click index in the upper right to get an alphabetical listing of the library functions. In all of the example code given it is assumed that ssd has been imported into your workspace. See the examples below for import options. # **Examples** ``` >>> import sk_dsp_comm.sigsys as ssd >>> # Commands then need to be prefixed with ssd., i.e., >>> ssd.tri(t,tau) >>> # A full import of the module, to avoid the the need to prefix with ssd, is: >>> from sk_dsp_comm.sigsys import * ``` # **Function Catalog** ``` sk_dsp_comm.sigsys.BPSK_tx(N_bits, Ns, ach_fc=2.0, ach_lvl_dB=-100, pulse='rect', alpha=0.25, M=6) ``` Generates biphase shift keyed (BPSK) transmitter with adjacent channel interference. Generates three BPSK signals with rectangular or square root raised cosine (SRC) pulse shaping of duration N_b and N_b samples per bit. The desired signal is centered on f = 0, which the adjacent channel signals to the left and right are also generated at dB level relative to the desired signal. Used in the digital communications Case Study supplement. #### **Parameters** ``` N_bits [the number of bits to simulate] ``` Ns [the number of samples per bit] ach_fc [the frequency offset of the adjacent channel signals (default 2.0)] ach_lvl_dB [the level of the adjacent channel signals in dB (default -100)] pulse :the pulse shape 'rect' or 'src' **alpha** [square root raised cosine pulse shape factor (default = 0.25)] M [square root raised cosine pulse truncation factor (default = 6)] #### Returns - x [ndarray of the composite signal $x0 + ach_lvl^*(x1p + x1m)$] - **b** [the transmit pulse shape] **data0** [the data bits used to form the desired signal; used for error checking] ### **Examples** ``` >>> x,b,data0 = BPSK_tx(1000,10,pulse='src') ``` ``` sk_dsp_comm.sigsys.CIC(M, K) ``` A functional form implementation of a cascade of integrator comb (CIC) filters. #### **Parameters** - **M** [Effective number of taps per section (typically the decimation factor).] - **K** [The number of CIC sections cascaded (larger K gives the filter a wider image rejection bandwidth).] ### Returns **b** [FIR filter coefficients for a simple direct form implementation using the filter() function.] ### **Notes** Commonly used in multirate signal processing digital down-converters and digital up-converters. A true CIC filter requires no multiplies, only add and subtract operations. The functional form created here is a simple FIR requiring real coefficient multiplies via filter(). ``` Mark Wickert July 2013 ``` ``` sk_dsp_comm.sigsys.NRZ_bits (N_bits, Ns, pulse='rect', alpha=0.25, M=6) Generate non-return-to-zero (NRZ) data bits with pulse shaping. ``` A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping. ### **Parameters** ``` N_bits [number of NRZ +/-1 data bits to produce] Ns [the number of samples per bit,] pulse_type ['rect' , 'rc', 'src' (default 'rect')] alpha [excess bandwidth factor(default 0.25)] M [single sided pulse duration (default = 6)] Returns x [ndarray of the NRZ signal values] b [ndarray of the pulse shape] ``` **data** [ndarray of the underlying data bits] ### **Notes** Pulse shapes include 'rect' (rectangular), 'rc' (raised cosine), 'src' (root raised cosine). The actual pulse length is 2*M+1 samples. This function is used by BPSK_tx in the Case Study article. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm.sigsys import NRZ_bits >>> from numpy import arange >>> x,b,data = NRZ_bits(100, 10) >>> t = arange(len(x)) >>> plt.plot(t, x) >>> plt.ylim([-1.01, 1.01]) >>> plt.show() ``` sk_dsp_comm.sigsys.**NRZ_bits2** (*data*, *Ns*, *pulse='rect'*, *alpha=0.25*, *M=6*) Generate non-return-to-zero (NRZ) data bits with pulse shaping with user data A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping. The data sequence is user supplied. #### **Parameters** ``` data [ndarray of the data bits as 0/1 values]Ns [the number of samples per bit,]pulse_type ['rect', 'rc', 'src' (default 'rect')] ``` alpha [excess bandwidth factor(default 0.25)] **M** [single sided pulse duration (default = 6)] ### Returns - x [ndarray of the NRZ signal values] - **b** [ndarray of the pulse shape] # **Notes** Pulse shapes include 'rect' (rectangular), 'rc' (raised cosine), 'src' (root raised cosine). The actual pulse length is 2*M+1 samples. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm.sigsys import NRZ_bits2 >>> from sk_dsp_comm.sigsys import m_seq >>> from numpy import arange >>> x,b = NRZ_bits2(m_seq(5),10) >>> t = arange(len(x)) >>> plt.ylim([-1.01, 1.01]) >>> plt.plot(t,x) ``` $sk_dsp_comm.sigsys.OA_filter(x, h, N, mode=0)$ Overlap and add transform domain FIR filtering. This function implements the classical overlap and add method of transform domain filtering using a length P FIR filter. ### **Parameters** - **x** [input signal to be filtered as an ndarray] - h [FIR filter coefficients as an ndarray of length P] **N** [FFT size > P, typically a power of two] **mode** [0 or 1, when 1 returns a diagnostic matrix] ### Returns y [the filtered output as an ndarray] **y_mat** [an ndarray whose rows are the individual overlap outputs.] # **Notes** y_mat is used for diagnostics and to gain understanding of the algorithm. # **Examples** ``` >>> import numpy as np >>> from sk_dsp_comm.sigsys import OA_filter >>> n = np.arange(0,100) >>> x = np.cos(2*pi*0.05*n) >>> b = np.ones(10) >>> y = OA_filter(x,h,N) >>> # set mode = 1 >>> y, y_mat = OA_filter(x,h,N,1) ```
$sk_dsp_comm.sigsys.OS_filter(x, h, N, mode=0)$ Overlap and save transform domain FIR filtering. This function implements the classical overlap and save method of transform domain filtering using a length P FIR filter. ### **Parameters** **x** [input signal to be filtered as an ndarray] h [FIR filter coefficients as an ndarray of length P] **N** [FFT size > P, typically a power of two] ``` mode [0 or 1, when 1 returns a diagnostic matrix] ``` #### Returns - y [the filtered output as an ndarray] - **y_mat** [an ndarray whose rows are the individual overlap outputs.] #### **Notes** y_mat is used for diagnostics and to gain understanding of the algorithm. # **Examples** ``` >>> n = arange(0,100) >>> x = cos(2*pi*0.05*n) >>> b = ones(10) >>> y = OS_filter(x,h,N) >>> # set mode = 1 >>> y, y_mat = OS_filter(x,h,N,1) ``` ``` sk_dsp_comm.sigsys.PN_gen (N_bits, m=5) ``` Maximal length sequence signal generator. Generates a sequence 0/1 bits of N_bit duration. The bits themselves are obtained from an m-sequence of length m. Available m-sequence (PN generators) include m = 2,3,...,12, & 16. #### **Parameters** ``` N_bits [the number of bits to generate] ``` ``` m [the number of shift registers. 2,3, .., 12, & 16] ``` #### Returns **PN** [ndarray of the generator output over N_bits] ### **Notes** The sequence is periodic having period $2^*m - 1 (2^m - 1)$. ### **Examples** ``` >>> # A 15 bit period signal nover 50 bits >>> PN = PN_gen(50,4) ``` ``` sk_dsp_comm.sigsys.am_rx(x192) ``` AM envelope detector receiver for the Chapter 17 Case Study The receiver bandpass filter is not included in this function. ### **Parameters** **x192** [ndarray of the AM signal at sampling rate 192 ksps] ### Returns m_rx8 [ndarray of the demodulated message at 8 ksps] ``` t8 [ndarray of the time axis at 8 ksps] ``` m_rx192 [ndarray of the demodulated output at 192 ksps] **x_edet192** [ndarray of the envelope detector output at 192 ksps] #### **Notes** The bandpass filter needed at the receiver front-end can be designed using b_bpf,a_bpf = am_rx_BPF(). # **Examples** ``` >>> import numpy as np >>> n = np.arange(0,1000) >>> # 1 kHz message signal >>> m = np.cos(2*np.pi*1000/8000.*n) >>> m_rx8,t8,m_rx192,x_edet192 = am_rx(x192) ``` ``` sk_dsp_comm.sigsys.am_rx_BPF (N_order=7, ripple_dB=1, B=10000.0, fs=192000.0) Bandpass filter design for the AM receiver Case Study of Chapter 17. ``` Design a 7th-order Chebyshev type 1 bandpass filter to remove/reduce adjacent channel intereference at the envelope detector input. #### **Parameters** ``` N_order [the filter order (default = 7)] ripple_dB [the passband ripple in dB (default = 1)] B [the RF bandwidth (default = 10e3)] fs [the sampling frequency] ``` ### Returns **b_bpf** [ndarray of the numerator filter coefficients] **a_bpf** [ndarray of the denominator filter coefficients] # **Examples** ``` >>> from scipy import signal >>> import numpy as np >>> import matplotlib.pyplot as plt >>> import sk_dsp_comm.sigsys as ss >>> # Use the default values >>> b_bpf,a_bpf = ss.am_rx_BPF() ``` Pole-zero plot of the filter. ``` >>> ss.zplane(b_bpf,a_bpf) >>> plt.show() ``` Plot of the frequency response. ``` >>> f = np.arange(0,192/2.,.1) >>> w, Hbpf = signal.freqz(b_bpf,a_bpf,2*np.pi*f/192) >>> plt.plot(f*10,20*np.log10(abs(Hbpf))) >>> plt.axis([0,1920/2.,-80,10]) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel("Frequency (kHz)") >>> plt.show() ``` sk_dsp_comm.sigsys.am_tx (m, a_mod, fc=75000.0) AM transmitter for Case Study of Chapter 17. Assume input is sampled at 8 Ksps and upsampling by 24 is performed to arrive at fs_out = 192 Ksps. ### **Parameters** m [ndarray of the input message signal] **a_mod** [AM modulation index, between 0 and 1] **fc** [the carrier frequency in Hz] # Returns **x192** [ndarray of the upsampled by 24 and modulated carrier] **t192** [ndarray of the upsampled by 24 time axis] m24 [ndarray of the upsampled by 24 message signal] ### **Notes** The sampling rate of the input signal is assumed to be 8 kHz. # **Examples** ``` >>> n = arange(0,1000) >>> # 1 kHz message signal >>> m = cos(2*pi*1000/8000.*n) >>> x192, t192 = am_tx(m,0.8,fc=75e3) ``` $sk_dsp_comm.sigsys.bin_num(n, n_bits)$ Produce a signed representation of the number n using n_bits. #### **Parameters** - n Number n - n bits Number of bits #### Returns sk_dsp_comm.sigsys.biquad2 (*w_num*, *r_num*, *w_den*, *r_den*) A biquadratic filter in terms of conjugate pole and zero pairs. # **Parameters** ``` w_num [zero frequency (angle) in rad/sample] ``` **r_num** [conjugate zeros radius] w_den [pole frequency (angle) in rad/sample] **r_den** [conjugate poles radius; less than 1 for stability] #### Returns - **b** [ndarray of numerator coefficients] - a [ndarray of denominator coefficients] ### **Examples** ``` >>> b,a = biquad2(pi/4., 1, pi/4., 0.95) ``` sk_dsp_comm.sigsys.bit_errors(z, data, start, Ns) A simple bit error counting function. In its present form this function counts bit errors between hard decision BPSK bits in +/-1 form and compares them with 0/1 binary data that was transmitted. Timing between the Tx and Rx data is the responsibility of the user. An enhanced version of this function, which features automatic synching will be created in the future. # Parameters z [ndarray of hard decision BPSK data prior to symbol spaced sampling] data [ndarray of reference bits in 1/0 format] **start** [timing reference for the received] Ns [the number of samples per symbol] ### Returns **Pe_hat** [the estimated probability of a bit error] ### **Notes** The Tx and Rx data streams are exclusive-or'd and the then the bit errors are summed, and finally divided by the number of bits observed to form an estimate of the bit error probability. This function needs to be enhanced to be more useful. # **Examples** ``` >>> from scipy import signal >>> x,b, data = NRZ_bits(1000,10) >>> # set Eb/N0 to 8 dB >>> y = cpx_AWGN(x,8,10) >>> # matched filter the signal >>> z = signal.lfilter(b,1,y) >>> # make bit decisions at 10 and Ns multiples thereafter >>> Pe_hat = bit_errors(z,data,10,10) ``` ``` sk_dsp_comm.sigsys.cascade_filters(b1, a1, b2, a2) ``` Cascade two IIR digital filters into a single (b,a) coefficient set. To cascade two digital filters (system functions) given their numerator and denominator coefficients you simply convolve the coefficient arrays. ### **Parameters** - **b1** [ndarray of numerator coefficients for filter 1] - **a1** [ndarray of denominator coefficients for filter 1] - **b2** [ndarray of numerator coefficients for filter 2] - **a2** [ndarray of denominator coefficients for filter 2] ### Returns - **b** [ndarray of numerator coefficients for the cascade] - a [ndarray of denominator coefficients for the cascade] ### **Examples** ``` >>> from scipy import signal >>> b1,a1 = signal.butter(3, 0.1) >>> b2,a2 = signal.butter(3, 0.15) >>> b,a = cascade_filters(b1,a1,b2,a2) ``` ``` sk_dsp_comm.sigsys.conv_integral(x1, tx1, x2, tx2, extent=('f', 'f')) ``` Continuous-time convolution of x1 and x2 with proper tracking of the output time axis. Approximate the convolution integral for the convolution of two continuous-time signals using the SciPy function signal. The time (sequence axis) are managed from input to output. y(t) = x1(t)*x2(t). #### **Parameters** **x1** [ndarray of signal x1 corresponding to tx1] ``` tx1 [ndarray time axis for x1] x2 [ndarray of signal x2 corresponding to tx2] tx2 [ndarray time axis for x2] extent [('e1','e2') where 'e1', 'e2' may be 'f' finite, 'r' right-sided, or 'l' left-sided] ``` #### Returns - **y** [ndarray of output values y] - ty [ndarray of the corresponding time axis for y] #### **Notes** The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending values in x1 and x2. The time steps used in x1(t) and x2(t) must match. The default extents of ('f','f') are used for signals that are active (have support) on or within t1 and t2 respectively. A right-sided signal such as $\exp(-a*t)*u(t)$ is semi-infinite, so it has extent 'r' and the convolution output will be truncated to display only the valid results. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import sk_dsp_comm.sigsys as ss >>> tx = np.arange(-5,10,.01) >>> x = ss.rect(tx-2,4) # pulse starts at t = 0 >>> y,ty = ss.conv_integral(x,tx,x,tx) >>> plt.plot(ty,y) # expect a triangle on [0,8] >>> plt.show() ``` Now, consider a pulse convolved with an exponential. ``` >>> h = 4*np.exp(-4*tx)*ss.step(tx) >>> y,ty = ss.conv_integral(x,tx,h,tx,extent=('f','r')) # note extents set >>> plt.plot(ty,y) # expect a pulse charge and discharge waveform ``` $sk_dsp_comm.sigsys.conv_sum(x1, nx1, x2, nx2, extent=('f', 'f'))$ Discrete convolution of x1 and x2 with proper tracking of the output time axis. Convolve two discrete-time signals using the SciPy function scipy.signal.convolution(). The time (sequence axis) are managed from input to output. y[n] = x1[n]*x2[n]. ### **Parameters** x1 [ndarray of signal x1 corresponding to nx1] **nx1** [ndarray time axis for x1] x2 [ndarray of signal x2 corresponding to nx2] **nx2** [ndarray time axis for x2] extent [('e1','e2') where 'e1', 'e2' may be 'f' finite, 'r' right-sided, or 'l' left-sided] # Returns y [ndarray of output values y] **ny** [ndarray of the corresponding sequence index n] # **Notes** The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending values in x1 and x2. The default extents of ('f','f') are used for signals that are active (have support) on or within x1 and x2 respectively. A right-sided signal such as x2 and x3 is semi-infinite, so it has extent 'r' and the convolution output will be truncated to display only the valid results. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import sk_dsp_comm.sigsys as ss >>> nx = np.arange(-5,10) >>> x = ss.drect(nx,4) >>> y,ny = ss.conv_sum(x,nx,x,nx) >>> plt.stem(ny,y)
>>> plt.show() ``` Consider a pulse convolved with an exponential. ('r' type extent) ``` >>> h = 0.5**nx*ss.dstep(nx) >>> y,ny = ss.conv_sum(x,nx,h,nx,('f','r')) # note extents set >>> plt.stem(ny,y) # expect a pulse charge and discharge sequence ``` sk_dsp_comm.sigsys.cpx_AWGN(x, EsNO, Ns) Apply white Gaussian noise to a digital communications signal. This function represents a complex baseband white Gaussian noise digital communications channel. The input signal array may be real or complex. ### **Parameters** **x** [ndarray noise free complex baseband input signal.] **EsNO** [set the channel Es/N0 (Eb/N0 for binary) level in dB] Ns [number of samples per symbol (bit)] ### Returns y [ndarray x with additive noise added.] #### **Notes** Set the channel energy per symbol-to-noise power spectral density ratio (Es/N0) in dB. # **Examples** ``` >>> x,b, data = NRZ_bits(1000,10) >>> # set Eb/N0 = 10 dB >>> y = cpx_AWGN(x,10,10) ``` sk_dsp_comm.sigsys.cruise_control (wn, zeta, T, vcruise, vmax, tf_mode='H') Cruise control with PI controller and hill disturbance. This function returns various system function configurations for a the cruise control Case Study example found in the supplementary article. The plant model is obtained by the linearizing the equations of motion and the controller contains a proportional and integral gain term set via the closed-loop parameters natural frequency wn (rad/s) and damping zeta. ### **Parameters** ``` wn [closed-loop natural frequency in rad/s, nominally 0.1] ``` **zeta** [closed-loop damping factor, nominally 1.0] **T** [vehicle time constant, nominally 10 s] veruise [cruise velocity set point, nominally 75 mph] vmax [maximum vehicle velocity, nominally 120 mph] tf_mode ['H', 'HE', 'HVW', or 'HED' controls the system function returned by the function] **'H'** [closed-loop system function V(s)/R(s)] **'HE'** [closed-loop system function E(s)/R(s)] **'HVW'** [closed-loop system function V(s)/W(s)] **'HED'** [closed-loop system function E(s)/D(s), where D is the hill disturbance input] ### Returns - **b** [numerator coefficient ndarray] - a [denominator coefficient ndarray] # **Examples** ``` >>> # return the closed-loop system function output/input velocity >>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='H') >>> # return the closed-loop system function loop error/hill disturbance >>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='HED') ``` ``` sk_dsp_comm.sigsys.deci24(x) ``` Decimate by L = 24 using Butterworth filters. The decimation is done using two three stages. Downsample sample by L=2 and lowpass filter, downsample by 3 and lowpass filter, then downsample by L=4 and lowpass filter. In all cases the lowpass filter is a 10th-order Butterworth lowpass. ### **Parameters** **x** [ndarray of the input signal] ### Returns y [ndarray of the output signal] #### **Notes** The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to track the upsampling by 2, 3, and 4 respectively. # **Examples** ``` >>> y = deci24(x) ``` ``` sk_dsp_comm.sigsys.delta_eps(t, eps) ``` Rectangular pulse approximation to impulse function. # **Parameters** ``` t [ndarray of time axis]eps [pulse width] ``` ### Returns **d** [ndarray containing the impulse approximation] # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import delta_eps >>> t = np.arange(-2,2,.001) >>> d = delta_eps(t,.1) >>> plt.plot(t,d) >>> plt.show() ``` sk_dsp_comm.sigsys.dimpulse(n) Discrete impulse function delta[n]. ### **Parameters** **n** [ndarray of the time axis] # Returns **x** [ndarray of the signal delta[n]] # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import dimpulse >>> n = arange(-5,5) >>> x = dimpulse(n) >>> plt.stem(n,x) >>> plt.show() ``` ### Shift the delta left by 2. ``` >>> x = dimpulse(n+2) >>> plt.stem(n,x) ``` ``` sk_dsp_comm.sigsys.downsample(x, M, p=0) ``` Downsample by factor M Keep every Mth sample of the input. The phase of the input samples kept can be selected. #### **Parameters** - x [ndarray of input signal values] - M [downsample factor] - **p** [phase of decimated value, 0 (default), 1, ..., M-1] #### Returns y [ndarray of the output signal values] # **Examples** ``` >>> y = downsample(x,3) >>> y = downsample(x,3,1) ``` ``` sk_dsp_comm.sigsys.drect(n, N) ``` Discrete rectangle function of duration N samples. The signal is active on the interval $0 \le n \le N-1$. Also known as the rectangular window function, which is available in scipy.signal. ### **Parameters** - n [ndarray of the time axis] - **N** [the pulse duration] # Returns **x** [ndarray of the signal] # **Notes** The discrete rectangle turns on at n = 0, off at n = N-1 and has duration of exactly N samples. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import drect >>> n = arange(-5,5) >>> x = drect(n, N=3) >>> plt.stem(n,x) >>> plt.show() ``` Shift the delta left by 2. ``` >>> x = drect(n+2, N=3) >>> plt.stem(n,x) ``` ``` sk_dsp_comm.sigsys.dstep(n) ``` Discrete step function u[n]. # **Parameters** **n** [ndarray of the time axis] ### Returns **x** [ndarray of the signal u[n]] # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import dstep >>> n = arange(-5,5) >>> x = dstep(n) >>> plt.stem(n,x) >>> plt.show() ``` # Shift the delta left by 2. ``` >>> x = dstep(n+2) >>> plt.stem(n,x) ``` sk_dsp_comm.sigsys.env_det(x) Ideal envelope detector. This function retains the positive half cycles of the input signal. # **Parameters** **x** [ndarray of the input sugnal] # Returns y [ndarray of the output signal] # **Examples** ``` >>> n = arange(0,100) >>> # 1 kHz message signal >>> m = cos(2*pi*1000/8000.*n) >>> x192, t192, m24 = am_tx(m,0.8,fc=75e3) >>> y = env_det(x192) ``` $sk_dsp_comm.sigsys.ex6_2(n)$ Generate a triangle pulse as described in Example 6-2 of Chapter 6. You need to supply an index array n that covers at least [-2, 5]. The function returns the hard-coded signal of the example. ### **Parameters** **n** [time index ndarray covering at least -2 to +5.] #### Returns **x** [ndarray of signal samples in x] # **Examples** ``` >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import sigsys as ss >>> n = np.arange(-5,8) >>> x = ss.ex6_2(n) >>> plt.stem(n,x) # creates a stem plot of x vs n ``` $sk_dsp_comm.sigsys.eye_plot(x, L, S=0)$ Eye pattern plot of a baseband digital communications waveform. The signal must be real, but can be multivalued in terms of the underlying modulation scheme. Used for BPSK eye plots in the Case Study article. ### **Parameters** - **x** [ndarray of the real input data vector/array] - L [display length in samples (usually two symbols)] - **S** [start index] ### Returns **Nothing** [A plot window opens containing the eye plot] # **Notes** Increase S to eliminate filter transients. # **Examples** 1000 bits at 10 samples per bit with 'rc' shaping. ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import sigsys as ss >>> x,b, data = ss.NRZ_bits(1000,10,'rc') >>> ss.eye_plot(x,20,60) ``` ``` sk_dsp_comm.sigsys.fir_iir_notch(fi,fs,r=0.95) ``` Design a second-order FIR or IIR notch filter. A second-order FIR notch filter is created by placing conjugate zeros on the unit circle at angle corresponding to the notch center frequency. The IIR notch variation places a pair of conjugate poles at the same angle, but with radius r < 1 (typically 0.9 to 0.95). ### **Parameters** - fi [notch frequency is Hz relative to fs] - **fs** [the sampling frequency in Hz, e.g. 8000] \mathbf{r} [pole radius for IIR version, default = 0.95] # Returns - **b** [numerator coefficient ndarray] - a [denominator coefficient ndarray] # **Notes** If the pole radius is 0 then an FIR version is created, that is there are no poles except at z = 0. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import sigsys as ss >>> b_FIR, a_FIR = ss.fir_iir_notch(1000,8000,0) >>> ss.zplane(b_FIR, a_FIR) >>> plt.show() >>> b_IIR, a_IIR = ss.fir_iir_notch(1000,8000) >>> ss.zplane(b_IIR, a_IIR) ``` sk_dsp_comm.sigsys.from_wav(filename) Read a wave file. A wrapper function for scipy.io.wavfile.read that also includes int16 to float [-1,1] scaling. #### **Parameters** **filename** [file name string] #### Returns - fs [sampling frequency in Hz] - x [ndarray of normalized to 1 signal samples] # **Examples** ``` >>> fs,x = from_wav('test_file.wav') ``` ``` sk_dsp_comm.sigsys.fs_approx(Xk, fk, t) ``` Synthesize periodic signal x(t) using Fourier series coefficients at harmonic frequencies Assume the signal is real so coefficients Xk are supplied for nonnegative indicies. The negative index coefficients are assumed to be complex conjugates. #### **Parameters** - Xk [ndarray of complex Fourier series coefficients] - fk [ndarray of harmonic frequencies in Hz] - t [ndarray time axis corresponding to output signal array x_approx] #### Returns **x_approx** [ndarray of periodic waveform approximation over time span t] ### **Examples** ``` >>> t = arange(0,2,.002) >>> # a 20% duty cycle pulse train >>> n = arange(0,20,1) # 0 to 19th harmonic >>> fk = 1*n % period = 1s >>> t, x_approx = fs_approx(Xk,fk,t) >>> plot(t,x_approx) ``` ``` sk_dsp_comm.sigsys.fs_coeff(xp, N, f0, one_side=True) ``` Numerically approximate the Fourier series coefficients given periodic x(t). The input is assummed to represent one period of the waveform x(t) that has been uniformly sampled. The number of samples supplied to represent one period of the waveform sets the sampling rate. # **Parameters** - \mathbf{xp} [ndarray of one period of the waveform $\mathbf{x}(t)$] - **N** [maximum Fourier series coefficient, [0, ..., N]] - **f0** [fundamental frequency used to form fk.] # Returns - **Xk** [ndarray of the coefficients over indices [0,1,...,N]] - fk [ndarray of the
harmonic frequencies [0, f0,2f0,...,Nf0]] ### **Notes** len(xp) >= 2*N+1 as len(xp) is the fft length. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> import sk_dsp_comm.sigsys as ss >>> t = arange(0,1,1/1024.) >>> # a 20% duty cycle pulse starting at t = 0 >>> x_rect = ss.rect(t-.1,0.2) >>> Xk, fk = ss.fs_coeff(x_rect,25,10) >>> # plot the spectral lines >>> ss.line_spectra(fk,Xk,'mag') >>> plt.show() ``` sk_dsp_comm.sigsys.ft_approx(x, t, Nfft) Approximate the Fourier transform of a finite duration signal using scipy.signal.freqz() ### **Parameters** - x [input signal array] - \mathbf{t} [time array used to create $\mathbf{x}(t)$] **Nfft** [the number of frdquency domain points used to] approximate X(f) on the interval [fs/2,fs/2], where fs = 1/Dt. Dt being the time spacing in array t # Returns f [frequency axis array in Hz] **X** [the Fourier transform approximation (complex)] #### **Notes** The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending values in x1 and x2. The default extents of ('f','f') are used for signals that are active (have support) on or within n1 and n2 respectively. A right-sided signal such as $a^n * u[n]$ is semi-infinite, so it has extent 'r' and the convolution output will be truncated to display only the valid results. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import sk_dsp_comm.sigsys as ss >>> fs = 100 # sampling rate in Hz >>> tau = 1 >>> t = np.arange(-5, 5, 1/fs) \rightarrow > x0 = ss.rect(t-.5, tau) >>> plt.figure(figsize=(6,5)) >>> plt.plot(t,x0) >>> plt.grid() >>> plt.ylim([-0.1,1.1]) >>> plt.xlim([-2,2]) >>> plt.title(r'Exact Waveform') >>> plt.xlabel(r'Time (s)') >>> plt.ylabel(r'$x_0(t)$') >>> plt.show() ``` ``` >>> # FT Exact Plot >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import sk_dsp_comm.sigsys as ss >>> fs = 100 # sampling rate in Hz >>> tau = 1 >>> t = np.arange(-5, 5, 1/fs) \rightarrow > x0 = ss.rect(t-.5, tau) >>> fe = np.arange(-10, 10, .01) >>> X0e = tau*np.sinc(fe*tau) >>> plt.plot(fe,abs(X0e)) >>> #plot(f, angle(X0)) >>> plt.grid() >>> plt.xlim([-10,10]) >>> plt.title(r'Exact (Theory) Spectrum Magnitude') >>> plt.xlabel(r'Frequency (Hz)') >>> plt.ylabel(r'$|X_0e(f)|$') >>> plt.show() ``` ``` >>> # FT Approximation Plot >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import sk_dsp_comm.sigsys as ss >>> fs = 100 # sampling rate in Hz >>> tau = 1 ``` (continues on next page) (continued from previous page) ``` >>> t = np.arange(-5,5,1/fs) >>> x0 = ss.rect(t-.5,tau) >>> f,X0 = ss.ft_approx(x0,t,4096) >>> plt.plot(f,abs(X0)) >>> #plt.plot(f,angle(X0)) >>> plt.grid() >>> plt.xlim([-10,10]) >>> plt.xlim([-10,10]) >>> plt.title(r'Approximation Spectrum Magnitude') >>> plt.ylabel(r'Frequency (Hz)') >>> plt.ylabel(r'$|X_0(f)|$'); >>> plt.tight_layout() >>> plt.show() ``` sk_dsp_comm.sigsys.interp24(x) Interpolate by L = 24 using Butterworth filters. The interpolation is done using three stages. Upsample by L=2 and lowpass filter, upsample by 3 and lowpass filter, then upsample by L=4 and lowpass filter. In all cases the lowpass filter is a 10th-order Butterworth lowpass. ### **Parameters** **x** [ndarray of the input signal] ### Returns y [ndarray of the output signal] ### **Notes** The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to track the upsampling by 2, 3, and 4 respectively. # **Examples** ``` >>> y = interp24(x) ``` ``` sk_dsp_comm.sigsys.line_spectra(fk, Xk, mode, sides=2, linetype='b', lwidth=2, floor_dB=-100, fsize=(6, 4)) ``` Plot the Fouier series line spectral given the coefficients. This function plots two-sided and one-sided line spectra of a periodic signal given the complex exponential Fourier series coefficients and the corresponding harmonic frequencies. #### **Parameters** ``` fk [vector of real sinusoid frequencies] Xk [magnitude and phase at each positive frequency in fk] mode ['mag' => magnitude plot, 'magdB' => magnitude in dB plot,] mode cont ['magdBn' => magnitude in dB normalized, 'phase' => a phase plot in radians] sides [2; 2-sided or 1-sided] linetype [line type per Matplotlib definitions, e.g., 'b';] ``` **lwidth** [2; linewidth in points] **fsize** [optional figure size in inches, default = (6,4) inches] # Returns Nothing [A plot window opens containing the line spectrum plot] # **Notes** Since real signals are assumed the frequencies of fk are 0 and/or positive numbers. The supplied Fourier coefficients correspond. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from sk_dsp_comm.sigsys import line_spectra >>> n = np.arange(0,25) >>> # a pulse train with 10 Hz fundamental and 20% duty cycle >>> fk = n*10 >>> Xk = np.sinc(n*10*.02)*np.exp(-1j*2*np.pi*n*10*.01) # 1j = sqrt(-1) ``` ``` >>> line_spectra(fk, Xk, 'mag') >>> plt.show() ``` ``` >>> line_spectra(fk, Xk, 'phase') ``` ``` sk_dsp_comm.sigsys.lms_ic(r, M, mu, delta=1) ``` Least mean square (LMS) interference canceller adaptive filter. A complete LMS adaptive filter simulation function for the case of interference cancellation. Used in the digital filtering case study. # **Parameters** ``` M [FIR Filter length (order M-1)] delta [Delay used to generate the reference signal] mu [LMS step-size] delta [decorrelation delay between input and FIR filter input] ``` #### Returns - n [ndarray Index vector] - r [ndarray noisy (with interference) input signal] - **r_hat** [ndarray filtered output (NB_hat[n])] - e [ndarray error sequence (WB_hat[n])] - ao [ndarray final value of weight vector] - **F** [ndarray frequency response axis vector] - Ao [ndarray frequency response of filter] # **Examples** ``` >>> # import a speech signal >>> fs,s = from_wav('OSR_us_000_0030_8k.wav') >>> # add interference at 1kHz and 1.5 kHz and >>> # truncate to 5 seconds >>> r = soi_snoi_gen(s,10,5*8000,[1000, 1500]) >>> # simulate with a 64 tap FIR and mu = 0.005 >>> n,r,r_hat,e,ao,F,Ao = lms_ic(r,64,0.005) ``` ``` sk_dsp_comm.sigsys.lp_samp(fb, fs, fmax, N, shape='tri', fsize=(6, 4)) ``` Lowpass sampling theorem plotting function. Display the spectrum of a sampled signal after setting the bandwidth, sampling frequency, maximum display frequency, and spectral shape. # **Parameters** ``` fb [spectrum lowpass bandwidth in Hz] fs [sampling frequency in Hz] fmax [plot over [-fmax,fmax]] shape ['tri' or 'line'] N [number of translates, N positive and N negative] fsize [the size of the figure window, default (6,4)] ``` ### Returns **Nothing** [A plot window opens containing the spectrum plot] ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm.sigsys import lp_samp ``` No aliasing as bandwidth 10 Hz < 25/2; fs > fb. ``` >>> lp_samp(10,25,50,10) >>> plt.show() ``` Now aliasing as bandwidth 15 Hz > 25/2; fs < fb. ``` >>> lp_samp(15,25,50,10) ``` $sk_dsp_comm.sigsys.lp_tri(f,fb)$ Triangle spectral shape function used by <code>lp_samp()</code>. # **Parameters** **f** [ndarray containing frequency samples] **fb** [the bandwidth as a float constant] ### Returns **x** [ndarray of spectrum samples for a single triangle shape] # **Notes** This is a support function for the lowpass spectrum plotting function <code>lp_samp()</code>. # **Examples** ``` >>> x = lp_tri(f, fb) ``` $sk_dsp_comm.sigsys.m_seq(m)$ Generate an m-sequence ndarray using an all-ones initialization. Available m-sequence (PN generators) include m = 2,3,...,12, & 16. ### **Parameters** **m** [the number of shift registers. 2,3, .., 12, & 16] # Returns c [ndarray of one period of the m-sequence] ### **Notes** The sequence period is 2**m - 1 ($2^m - 1$). # **Examples** ``` >>> c = m_seq(5) ``` ``` sk_dsp_comm.sigsys.my_psd(x, NFFT=1024, Fs=1) ``` A local version of NumPy's PSD function that returns the plot arrays. A mlab.psd wrapper function that returns two ndarrays; makes no attempt to auto plot anything. #### **Parameters** ``` x [ndarray input signal] NFFT [a power of two, e.g., 2**10 = 1024] Fs [the sampling rate in Hz] ``` #### Returns **Px** [ndarray of the power spectrum estimate] f [ndarray of frequency values] #### **Notes** This function makes it easier to overlay spectrum plots because you have better control over the axis scaling than when using psd() in the autoscale mode. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from numpy import log10 >>> from sk_dsp_comm import sigsys as ss >>> x,b, data = ss.NRZ_bits(10000,10) >>> Px,f = ss.my_psd(x,2**10,10) >>> plt.plot(f, 10*log10(Px)) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel("Frequency (Hz)") >>> plt.show() ``` ``` sk_dsp_comm.sigsys.peaking(GdB, fc, Q=3.5, fs=44100.0) ``` A second-order peaking filter having GdB gain at fc and approximately and 0 dB otherwise. The filter coefficients returns correspond to a biquadratic system function containing five parameters. ### **Parameters** ``` GdB [Lowpass gain in dB] ``` fc [Center frequency in Hz] **Q** [Filter Q which is inversely proportional to bandwidth] fs [Sampling frquency in Hz] ### Returns - **b** [ndarray containing the numerator filter coefficients] - **a** [ndarray containing the denominator filter coefficients] ``` >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from sk_dsp_comm.sigsys import peaking >>> from scipy import signal >>> b,a = peaking(2.0,500) >>> f = np.logspace(1,5,400) >>> w,H = signal.freqz(b,a,2*np.pi*f/44100) >>> plt.semilogx(f,20*np.log10(abs(H))) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel("Frequency (Hz)") >>> plt.show() ``` ``` >>> b,a = peaking(-5.0,500,4) >>> w,H = signal.freqz(b,a,2*np.pi*f/44100) >>> plt.semilogx(f,20*np.log10(abs(H))) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel("Frequency (Hz)") ``` sk_dsp_comm.sigsys.position_CD (*Ka*, out_type='fb_exact') CD sled position control case study of Chapter 18. The function returns the closed-loop and open-loop system function for a CD/DVD sled position
control system. The loop amplifier gain is the only variable that may be changed. The returned system function can however be changed. ### **Parameters** **Ka** [loop amplifier gain, start with 50.] out_type ['open_loop' for open loop system function] ``` out_type ['fb_approx' for closed-loop approximation] out_type ['fb_exact' for closed-loop exact] ``` #### Returns - **b** [numerator coefficient ndarray] - a [denominator coefficient ndarray] #### **Notes** With the exception of the loop amplifier gain, all other parameters are hard-coded from Case Study example. # **Examples** ``` >>> b,a = position_CD(Ka,'fb_approx') >>> b,a = position_CD(Ka,'fb_exact') ``` ``` sk_dsp_comm.sigsys.prin_alias(f_in, fs) ``` Calculate the principle alias frequencies. Given an array of input frequencies the function returns an array of principle alias frequencies. #### **Parameters** ``` f_in [ndarray of input frequencies]fs [sampling frequency] ``` ### Returns **f_out** [ndarray of principle alias frequencies] ### **Examples** ``` >>> # Linear frequency sweep from 0 to 50 Hz >>> f_in = arange(0,50,0.1) >>> # Calculate principle alias with fs = 10 Hz >>> f_out = prin_alias(f_in,10) ``` ``` sk_dsp_comm.sigsys.rc_imp(Ns, alpha, M=6) ``` A truncated raised cosine pulse used in digital communications. The pulse shaping factor $0 < \alpha < 1$ is required as well as the truncation factor M which sets the pulse duration to be 2*M*Tsymbol. # **Parameters** ``` Ns [number of samples per symbol]alpha [excess bandwidth factor on (0, 1), e.g., 0.35]M [equals RC one-sided symbol truncation factor] ``` ### Returns **b** [ndarray containing the pulse shape] # **Notes** The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform. # **Examples** Ten samples per symbol and alpha = 0.35. ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import rc_imp >>> b = rc_imp(10,0.35) >>> n = arange(-10*6,10*6+1) >>> plt.stem(n,b) >>> plt.show() ``` ``` sk_dsp_comm.sigsys.rect(t, tau) ``` Approximation to the rectangle pulse Pi(t/tau). In this numerical version of Pi(t/tau) the pulse is active over -tau/2 \leq t \leq tau/2. ### **Parameters** t [ndarray of the time axis] tau [the pulse width] ### Returns x [ndarray of the signal Pi(t/tau)] ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import rect >>> t = arange(-1,5,.01) >>> x = rect(t,1.0) >>> plt.plot(t,x) >>> plt.ylim([0, 1.01]) >>> plt.show() ``` To turn on the pulse at t = 1 shift t. ``` >>> x = rect(t - 1.0,1.0) >>> plt.plot(t,x) >>> plt.ylim([0, 1.01]) ``` sk_dsp_comm.sigsys.rect_conv(n, N_len) The theoretical result of convolving two rectangle sequences. The result is a triangle. The solution is based on pure analysis. Simply coded as opposed to efficiently coded. ### **Parameters** **n** [ndarray of time axis] **N_len** [rectangle pulse duration] ### Returns y [ndarray of of output signal] ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import rect_conv >>> n = arange(-5,20) >>> y = rect_conv(n,6) >>> plt.plot(n, y) >>> plt.show() ``` sk_dsp_comm.sigsys.scatter(x, Ns, start) Sample a baseband digital communications waveform at the symbol spacing. # **Parameters** x [ndarray of the input digital comm signal] Ns [number of samples per symbol (bit)] **start** [the array index to start the sampling] #### Returns - **xI** [ndarray of the real part of x following sampling] - **xQ** [ndarray of the imaginary part of x following sampling] #### **Notes** Normally the signal is complex, so the scatter plot contains clusters at points in the complex plane. For a binary signal such as BPSK, the point centers are nominally +/-1 on the real axis. Start is used to eliminate transients from the FIR pulse shaping filters from appearing in the scatter plot. # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import sigsys as ss >>> x,b, data = ss.NRZ_bits(1000,10,'rc') >>> # Add some noise so points are now scattered about +/-1 >>> y = ss.cpx_AWGN(x,20,10) >>> yI,yQ = ss.scatter(y,10,60) >>> plt.plot(yI,yQ,'.') >>> plt.axis('equal') >>> plt.ylabel("Quadrature") >>> plt.xlabel("In-Phase") >>> plt.grid() >>> plt.show() ``` ``` sk_dsp_comm.sigsys.simpleQuant(x, Btot, Xmax, Limit) ``` A simple rounding quantizer for bipolar signals having Btot = B + 1 bits. This function models a quantizer that employs Btot bits that has one of three selectable limiting types: saturation, overflow, and none. The quantizer is bipolar and implements rounding. ### **Parameters** **x** [input signal ndarray to be quantized] Btot [total number of bits in the quantizer, e.g. 16] Xmax [quantizer full-scale dynamic range is [-Xmax, Xmax]] Limit = Limiting of the form 'sat', 'over', 'none' #### Returns xq [quantized output ndarray] ### **Notes** The quantization can be formed as e = xq - x # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from matplotlib.mlab import psd >>> import numpy as np >>> from sk_dsp_comm import sigsys as ss >>> n = np.arange(0,10000) >>> x = np.cos(2*np.pi*0.211*n) >>> y = ss.sinusoidAWGN(x,90) >>> Px, f = psd(y,2**10,Fs=1) >>> plt.plot(f, 10*np.log10(Px)) >>> plt.ylim([-80, 25]) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel(r'Normalized Frequency $\omega/2\pi$') >>> plt.show() ``` ``` >>> yq = ss.simpleQuant(y,12,1,'sat') >>> Px, f = psd(yq,2**10,Fs=1) >>> plt.plot(f, 10*np.log10(Px)) >>> plt.ylim([-80, 25]) >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.xlabel(r'Normalized Frequency $\omega/2\pi$') >>> plt.show() ``` sk_dsp_comm.sigsys.simple_SA (x, NS, NFFT, fs, NAVG=1, window='boxcar')Spectral estimation using windowing and averaging. This function implements averaged periodogram spectral estimation estimation similar to the NumPy's psd() function, but more specialized for the windowing case study of Chapter 16. ### **Parameters** **x** [ndarray containing the input signal] **NS** [The subrecord length less zero padding, e.g. NS < NFFT] **NFFT** [FFT length, e.g., 1024 = 2**10] **fs** [sampling rate in Hz] **NAVG** [the number of averages, e.g., 1 for deterministic signals] window [hardcoded window 'boxcar' (default) or 'hanning'] # Returns f [ndarray frequency axis in Hz on [0, fs/2]] **Sx** [ndarray the power spectrum estimate] ### **Notes** The function also prints the maximum number of averages K possible for the input data record. ### **Examples** ``` >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from sk_dsp_comm import sigsys as ss >>> n = np.arange(0,2048) >>> x = np.cos(2*np.pi*1000/10000*n) + 0.01*np.cos(2*np.pi*3000/10000*n) >>> f, Sx = ss.simple_SA(x,128,512,10000) >>> plt.plot(f, 10*np.log10(Sx)) >>> plt.ylim([-80, 0]) >>> plt.ylim([-80, 0]) >>> plt.ylabel("Frequency (Hz)") >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.show() ``` With a hanning window. ``` >>> f, Sx = ss.simple_SA(x,256,1024,10000,window='hanning') >>> plt.plot(f, 10*np.log10(Sx)) >>> plt.xlabel("Frequency (Hz)") >>> plt.ylabel("Power Spectral Density (dB)") >>> plt.ylim([-80, 0]) ``` $sk_dsp_comm.sigsys.sinusoidAWGN(x, SNRdB)$ Add white Gaussian noise to a single real sinusoid. Input a single sinusoid to this function and it returns a noisy sinusoid at a specific SNR value in dB. Sinusoid power is calculated using np.var. #### **Parameters** x [Input signal as ndarray consisting of a single sinusoid] **SNRdB** [SNR in dB for output sinusoid] ### Returns y [Noisy sinusoid return vector] # **Examples** ``` >>> # set the SNR to 10 dB >>> n = arange(0,10000) >>> x = cos(2*pi*0.04*n) >>> y = sinusoidAWGN(x,10.0) ``` $sk_dsp_comm.sigsys.soi_snoi_gen(s, SIR_dB, N, fi, fs=8000)$ Add an interfering sinusoidal tone to the input signal at a given SIR_dB. The input is the signal of interest (SOI) and number of sinsuoid signals not of interest (SNOI) are added to the SOI at a prescribed signal-to- intereference SIR level in dB. #### **Parameters** s [ndarray of signal of SOI] **SIR_dB** [interference level in dB] **N** [Trim input signal s to length N + 1 samples] fi [ndarray of intereference frequencies in Hz] **fs** [sampling rate in Hz, default is 8000 Hz] # Returns r [ndarray of combined signal plus intereference of length N+1 samples] ``` >>> # load a speech ndarray and trim to 5*8000 + 1 samples >>> fs,s = from_wav('OSR_us_000_0030_8k.wav') >>> r = soi_snoi_gen(s,10,5*8000,[1000, 1500]) ``` ``` sk_dsp_comm.sigsys.splane (b, a, auto_scale=True, size=[-1, 1, -1, 1]) Create an s-plane pole-zero plot. ``` As input the function uses the numerator and denominator s-domain system function coefficient ndarrays b and a respectively. Assumed to be stored in descending powers of s. #### **Parameters** ``` b [numerator coefficient ndarray.] a [denominator coefficient ndarray.] auto_scale [True] size [[xmin,xmax,ymin,ymax] plot scaling when scale = False] ``` #### Returns (M,N) [tuple of zero and pole counts + plot window] #### **Notes** This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via the function signal.unique_roots. ### **Examples** ``` >>> # Here the plot is generated using auto_scale >>> splane(b,a) >>> # Here the plot is generated using manual scaling >>> splane(b,a,False,[-10,1,-10,10]) ``` ``` sk_dsp_comm.sigsys.sqrt_rc_imp (Ns, alpha, M=6) ``` A truncated square root raised cosine pulse used in digital communications. The pulse shaping factor 0 < alpha < 1 is required as well as the truncation factor M which sets the pulse duration to be 2*M*Tsymbol. ### **Parameters** ``` Ns [number of samples per symbol]alpha [excess bandwidth factor on (0, 1), e.g., 0.35]M [equals RC one-sided symbol truncation factor] ``` #### Returns **b** [ndarray containing the pulse shape] ###
Notes The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform. When square root raised cosine (SRC) pulse is used generate Tx signals and at the receiver used as a matched filter (receiver FIR filter), the received signal is now raised cosine shaped, this having zero intersymbol interference and the optimum removal of additive white noise if present at the receiver input. # **Examples** ``` >>> # ten samples per symbol and alpha = 0.35 >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import sqrt_rc_imp >>> b = sqrt_rc_imp(10,0.35) >>> n = arange(-10*6,10*6+1) >>> plt.stem(n,b) >>> plt.show() ``` ``` sk_dsp_comm.sigsys.step(t) ``` Approximation to step function signal u(t). In this numerical version of u(t) the step turns on at t = 0. # **Parameters** t [ndarray of the time axis] ### Returns **x** [ndarray of the step function signal u(t)] ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import step >>> t = arange(-1,5,.01) >>> x = step(t) >>> plt.plot(t,x) >>> plt.ylim([-0.01, 1.01]) >>> plt.show() ``` To turn on at t = 1, shift t. ``` >>> x = step(t - 1.0) >>> plt.ylim([-0.01, 1.01]) >>> plt.plot(t,x) ``` sk_dsp_comm.sigsys.ten_band_eq_filt(x, GdB, Q=3.5) Filter the input signal x with a ten-band equalizer having octave gain values in ndarray GdB. The signal x is filtered using octave-spaced peaking filters starting at 31.25 Hz and stopping at 16 kHz. The Q of each filter is 3.5, but can be changed. The sampling rate is assumed to be 44.1 kHz. #### **Parameters** **x** [ndarray of the input signal samples] **GdB** [ndarray containing ten octave band gain values [G0dB,...,G9dB]] **Q** [Quality factor vector for each of the NB peaking filters] # Returns y [ndarray of output signal samples] ``` >>> # Test with white noise >>> w = randn(100000) >>> y = ten_band_eq_filt(x,GdB) >>> psd(y,2**10,44.1) ``` sk_dsp_comm.sigsys.ten_band_eq_resp(GdB, Q=3.5) Create a frequency response magnitude plot in dB of a ten band equalizer using a semilogplot (semilogx()) type plot ### **Parameters** **GdB** [Gain vector for 10 peaking filters [G0,...,G9]] **Q** [Quality factor for each peaking filter (default 3.5)] ### Returns **Nothing** [two plots are created] # **Examples** ``` >>> import matplotlib.pyplot as plt >>> from sk_dsp_comm import sigsys as ss >>> ss.ten_band_eq_resp([0,10.0,0,0,-1,0,5,0,-4,0]) >>> plt.show() ``` sk_dsp_comm.sigsys.to_wav(filename, rate, x) Write a wave file. A wrapper function for scipy.io.wavfile.write that also includes int16 scaling and conversion. Assume input x is [-1,1] values. ### **Parameters** filename [file name string] rate [sampling frequency in Hz] # Returns **Nothing** [writes only the *.wav file] # **Examples** ``` >>> to_wav('test_file.wav', 8000, x) ``` sk_dsp_comm.sigsys.tri(t, tau) Approximation to the triangle pulse Lambda(t/tau). In this numerical version of Lambda(t/tau) the pulse is active over -tau <= t <= tau. # **Parameters** t [ndarray of the time axis] tau [one half the triangle base width] #### **Returns** x [ndarray of the signal Lambda(t/tau)] ``` >>> import matplotlib.pyplot as plt >>> from numpy import arange >>> from sk_dsp_comm.sigsys import tri >>> t = arange(-1,5,.01) >>> x = tri(t,1.0) >>> plt.plot(t,x) >>> plt.show() ``` # To turn on at t = 1, shift t. ``` >>> x = tri(t - 1.0,1.0) >>> plt.plot(t,x) ``` sk_dsp_comm.sigsys.unique_cpx_roots(rlist, tol=0.001) The average of the root values is used when multiplicity is greater than one. Mark Wickert October 2016 ``` sk_dsp_comm.sigsys.upsample(x, L) Upsample by factor L ``` Insert L - 1 zero samples in between each input sample. #### **Parameters** - x [ndarray of input signal values] - L [upsample factor] #### Returns y [ndarray of the output signal values] # **Examples** ``` >>> y = upsample(x,3) ``` ``` sk_dsp_comm.sigsys.zplane (b, a, auto_scale=True, size=2, detect_mult=True, tol=0.001) Create an z-plane pole-zero plot. ``` Create an z-plane pole-zero plot using the numerator and denominator z-domain system function coefficient ndarrays b and a respectively. Assume descending powers of z. #### **Parameters** - **b** [ndarray of the numerator coefficients] - a [ndarray of the denominator coefficients] ``` auto_scale [bool (default True)] ``` **size** [plot radius maximum when scale = False] ### Returns (M,N) [tuple of zero and pole counts + plot window] # **Notes** This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via the function signal.unique_roots. ### **Examples** ``` >>> # Here the plot is generated using auto_scale >>> zplane(b,a) >>> # Here the plot is generated using manual scaling >>> zplane(b,a,False,1.5) ``` # synchronization A Digital Communications Synchronization and PLLs Function Module A collection of useful functions when studying PLLs and synchronization and digital comm Copyright (c) March 2017, Mark Wickert All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. ``` sk_dsp_comm.synchronization.DD_carrier_sync (z, M, BnTs, zeta=0.707, mod_type='MPSK', type=0, open_loop=False) z_prime,a_hat,e_phi = DD_carrier_sync(z,M,BnTs,zeta=0.707,type=0) Decision directed carrier phase tracking z = complex baseband PSK signal at one sample per symbol M = The PSK modulation order, i.e., 2, 8, or 8. ``` **BnTs = time bandwidth product of loop bandwidth and the symbol period,** thus loop bandwidth as a fraction of the symbol rate. zeta = loop damping factor type = Phase error detector type: 0 <> ML, 1 <> heuristic **z_prime** = phase rotation output (like soft symbol values) **a_hat = the hard decision symbol values landing at the constellation** values e_{phi} = the phase error e(k) into the loop filter Ns = Nominal number of samples per symbol (Ts/T) in the carrier phase tracking loop, almost always 1 **Kp = The phase detector gain in the carrier phase tracking loop;** This value depends upon the algorithm type. For the ML scheme described at the end of notes Chapter 9, A = 1, K Mark Wickert July 2014 Updated for improved MPSK performance April 2020 Added experimental MQAM capability April 2020 Motivated by code found in M. Rice, Digital Communications A Discrete-Time Approach, Prentice Hall, New Jersey, 2009. (ISBN 978-0-13-030497-1). sk_dsp_comm.synchronization.NDA_symb_sync(z, Ns, L, BnTs, zeta=0.707, I_ord=3) z = complex baseband input signal at nominally Ns samples per symbol Ns = Nominal number of samples per symbol (Ts/T) in the symbol tracking loop, often 4 **BnTs = time bandwidth product of loop bandwidth and the symbol period,** thus the loop bandwidth as a fraction of the symbol rate. zeta = loop damping factor $I_{ord} = interpolator order, 1, 2, or 3$ $e_{tau} = the timing error e(k) input to the loop filter$ **Kp = The phase detector gain in the symbol tracking loop; for the** NDA algoithm used here always 1 Mark Wickert July 2014 Motivated by code found in M. Rice, Digital Communications A Discrete-Time Approach, Prentice Hall, New Jersey, 2009. (ISBN 978-0-13-030497-1). sk_dsp_comm.synchronization.**PLL1** (*theta*, *fs*, *loop_type*, *Kv*, *fn*, *zeta*, *non_lin*) Baseband Analog PLL Simulation Model #### **Parameters** - theta input phase deviation in radians - **fs** sampling rate in sample per second or Hz - loop_type 1, first-order loop filter $F(s)=K_LF$; 2, integrator with lead compensation $F(s) = (1 + s \tan 2)/(s \tan 1)$, i.e., a type II, or 3, lowpass with lead compensation $F(s) = (1 + s \tan 2)/(1 + s \tan 1)$ - \mathbf{Kv} VCO gain in Hz/v; note presently assume Kp = 1v/rad and K_LF = 1; the user can easily change this - fn Loop natural frequency (loops 2 & 3) or cutoff frquency (loop 1) - **zeta** Damping factor for loops 2 & 3 - non_lin 0, linear phase detector; 1, sinusoidal phase detector **Returns** theta_hat = Output phase estimate of the input theta in radians, ev = VCO control voltage, phi = phase error = theta - theta_hat . synchronization 199 ### **Notes** Alternate input in place of natural frequency, fn, in Hz is the noise equivalent bandwidth Bn in Hz. Mark Wickert, April 2007 for ECE 5625/4625 Modified February 2008 and July 2014 for ECE 5675/4675 Python version August 2014 sk_dsp_comm.synchronization.**PLL_cbb** (*x*, *fs*, *loop_type*, *Kv*, *fn*, *zeta*) Baseband Analog PLL Simulation Model ### **Parameters** - \mathbf{x} input
phase deviation in radians - fs sampling rate in sample per second or Hz - loop_type 1, first-order loop filter $F(s)=K_LF$; 2, integrator with lead compensation F(s)=(1+s tau2)/(s tau1), i.e., a type II, or 3, lowpass with lead compensation F(s)=(1+s tau2)/(1+s tau1) - **Kv** VCO gain in Hz/v; note presently assume Kp = 1v/rad and K_LF = 1; the user can easily change this - fn Loop natural frequency (loops 2 & 3) or cutoff frequency (loop 1) - zeta Damping factor for loops 2 & 3 **Returns** theta_hat = Output phase estimate of the input theta in radians, ev = VCO control voltage, phi = phase error = theta - theta_hat Mark Wickert, April 2007 for ECE 5625/4625 Modified February 2008 and July 2014 for ECE 5675/4675 Python version August 2014 sk_dsp_comm.synchronization.phase_step(z, Ns, p_step, Nstep) Create a one sample per symbol signal containing a phase rotation step Nsymb into the waveform. #### **Parameters** - z complex baseband signal after matched filter - Ns number of sample per symbol - p step size in radians of the phase step - **Nstep** symbol sample location where the step turns on **Returns** the one sample symbol signal containing the phase step Mark Wickert July 2014 sk_dsp_comm.synchronization.time_step(z, Ns, t_step, Nstep) Create a one sample per symbol signal containing a phase rotation step Nsymb into the waveform. ### Parameters - **z** complex baseband signal after matched filter - Ns number of sample per symbol - t step in samples relative to Ns - Nstep symbol sample location where the step turns on **Returns** the one sample per symbol signal containing the phase step Mark Wickert July 2014 # **CHAPTER** # **THREE** # **INDICES AND TABLES** - genindex - modindex - search # **PYTHON MODULE INDEX** # S ``` sk_dsp_comm.coeff2header, 93 sk_dsp_comm.digitalcom, 94 sk_dsp_comm.fec_conv, 112 sk_dsp_comm.fir_design_helper, 123 sk_dsp_comm.iir_design_helper, 126 sk_dsp_comm.multirate_helper, 130 sk_dsp_comm.pyaudio_helper, 132 sk_dsp_comm.rtlsdr_helper, 136 sk_dsp_comm.sigsys, 143 sk_dsp_comm.synchronization, 198 ``` 204 Python Module Index # **INDEX** | A | complex2wav() (in module | |--|---| | am_rx() (in module sk_dsp_comm.sigsys), 148 | sk_dsp_comm.rtlsdr_helper), 142 | | am_rx_BPF() (in module sk_dsp_comm.sigsys), 149 | conv_encoder() (sk_dsp_comm.fec_conv.fec_conv | | am_tx() (in module sk_dsp_comm.sigsys), 151 | method), 115 | | available_devices() (in module | <pre>conv_integral() (in module sk_dsp_comm.sigsys),</pre> | | sk_dsp_comm.pyaudio_helper), 135 | 153 | | AWGN_chan() (in module sk_dsp_comm.digitalcom), | conv_Pb_bound() (in module sk_dsp_comm.fec_conv), 113 | | 95 | conv_sum() (in module sk_dsp_comm.sigsys), 155 | | В | cpx_AWGN() (in module sk_dsp_comm.sigsys), 156 | | | cruise_control() (in module | | bandpass_order() (in module | sk_dsp_comm.sigsys), 157 | | sk_dsp_comm.fir_design_helper), 124 | sk_asp_comm.sigsys), 137 | | bandstop_order() (in module | D | | sk_dsp_comm.fir_design_helper), 124 | | | <pre>bin2gray() (in module sk_dsp_comm.digitalcom),</pre> | DD_carrier_sync() (in module | | 103 | sk_dsp_comm.synchronization), 198 | | bin_num() (in module sk_dsp_comm.sigsys), 152 | deci24() (in module sk_dsp_comm.sigsys), 158 | | <pre>binary() (in module sk_dsp_comm.fec_conv), 113</pre> | delta_eps() (in module sk_dsp_comm.sigsys), 158 | | biquad2() (in module sk_dsp_comm.sigsys), 152 | depuncture() (sk_dsp_comm.fec_conv.fec_conv | | <pre>bit_errors() (in module sk_dsp_comm.digitalcom),</pre> | method), 115 | | 103 | dimpulse() (in module sk_dsp_comm.sigsys), 159 | | <pre>bit_errors() (in module sk_dsp_comm.sigsys), 152</pre> | <pre>discrim() (in module sk_dsp_comm.rtlsdr_helper),</pre> | | <pre>bm_calc() (sk_dsp_comm.fec_conv.fec_conv method),</pre> | 142 | | 115 | dn() (sk_dsp_comm.multirate_helper.multirate_FIR | | BPSK_BEP() (in module sk_dsp_comm.digitalcom), 95 | method), 131 | | BPSK_tx() (in module sk_dsp_comm.digitalcom), 95 | dn() (sk_dsp_comm.multirate_helper.multirate_IIR | | BPSK_tx() (in module sk_dsp_comm.sigsys), 144 | method), 132 | | С | dn() (sk_dsp_comm.multirate_helper.rate_change method), 132 | | | downsample() (in module sk_dsp_comm.sigsys), 159 | | CA_code_header() (in module | drect() (in module sk_dsp_comm.sigsys), 161 | | sk_dsp_comm.coeff2header), 93 | DSP_callback_tic() | | cascade_filters() (in module | (sk_dsp_comm.pyaudio_helper.DSP_io_stream | | sk_dsp_comm.sigsys), 153 | | | cb_active_plot() (sk_dsp_comm.pyaudio_helper.DS | P_io_stream The arrival of the DSP_callback_toc() | | method), 134 | (sk_dsp_comm.pyaudio_helper.DSP_io_stream | | chan_est_equalize() (in module | method), 134 | | sk_dsp_comm.digitalcom), 103 | DSP_capture_add_samples() | | CIC() (in module sk_dsp_comm.sigsys), 144 | (ak dan aamm maudia halnan DCD ia atnaam | | clear_buffer() (sk_dsp_comm.rtlsdr_helper.RTLSDR
method), 138 | method), 134 | | clear_logs()(sk_dsp_comm.rtlsdr_helper.RTLSDR_st | DSP_capture_add_samples_stereo() | | method), 138 | (sk_dsp_comm.pyaudio_helper.DSP_io_stream | | method), 134 | | <pre>freqz_resp_cas_list()</pre> | |--|-----------------------------|--| | DSP_io_stream (class | in | sk_dsp_comm.iir_design_helper), 128 | | sk_dsp_comm.pyaudio_helper), 1 | | <pre>freqz_resp_list()</pre> | | dstep() (in module sk_dsp_comm.sigsys |), 161 | sk_dsp_comm.coeff2header), 94 | | E | | freqz_resp_list() (in module | | | | sk_dsp_comm.fir_design_helper), 125 | | env_det() (in module sk_dsp_comm.sig | | freqz_resp_list() (in module | | ex6_2() (in module sk_dsp_comm.sigsys | | sk_dsp_comm.iir_design_helper), 129 | | eye_plot() (in module sk_dsp_comm | m.digitalcom), | from_bin() (in module sk_dsp_comm.digitalcom), 106 | | 104 | (amia) 164 | from_wav() (in module sk_dsp_comm.sigsys), 166 | | eye_plot() (in module sk_dsp_comm.si | .gsys), 104 | fs_approx() (in module sk_dsp_comm.sigsys), 169 | | F | | fs_coeff() (in module sk_dsp_comm.sigsys), 169 | | | module | fsk_BEP() (in module sk_dsp_comm.rtlsdr_helper), | | farrow_resample() (in | тоаше | 142 | | sk_dsp_comm.digitalcom), 105
fec_conv (class in sk_dsp_comm.fec_com | m) 113 | <pre>ft_approx() (in module sk_dsp_comm.sigsys), 170</pre> | | filter() (sk_dsp_comm.multirate_helpe | av), 115
ermultirate FIR | | | method), 131 | er.mannane_1 IK | G | | filter() (sk dsp comm.multirate helpe | er.multirate IIR | $\verb"get_bandwidth"()" (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream")$ | | method), 132 | | method), 138 | | FIR_fix_header() (in | module | <pre>get_buffer() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream</pre> | | sk_dsp_comm.coeff2header), 93 | | method), 138 | | FIR_header() (in | module | <pre>get_center_freq()</pre> | | $sk_dsp_comm.coeff2header), 94$ | | (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream | | <pre>fir_iir_notch() (in module sk_dsp_</pre> | comm.sigsys), | method), 138 | | 165 | | <pre>get_data_out_async()</pre> | | fir_remez_bpf() (in | module | (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream | | sk_dsp_comm.fir_design_helper) | | method), 138 | | fir_remez_bsf() (in | module | <pre>get_gain() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream</pre> | | sk_dsp_comm.fir_design_helper) | | method), 138 | | <pre>fir_remez_hpf()</pre> | module | get_LR() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 | | sk_dsp_comm.fir_design_helper) | | get_processed_stage1_frame() | | fir_remez_lpf() (in | | (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream | | <pre>sk_dsp_comm.fir_design_helper) firwin_bpf()</pre> | , 124
module | method), 138 | | sk_dsp_comm.fir_design_helper) | | <pre>get_rf_frame() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream</pre> | | firwin_kaiser_bpf() (in | module | method), 138 | | sk_dsp_comm.fir_design_helper) | | <pre>get_sample_rate()</pre> | | firwin_kaiser_bsf() (in | module | (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream | | sk_dsp_comm.fir_design_helper) | , 125 | method), 138 | | firwin_kaiser_hpf() (in | | <pre>get_samples() (sk_dsp_comm.pyaudio_helper.loop_audio</pre> | | sk_dsp_comm.fir_design_helper) | | method), 135 | | firwin_kaiser_lpf() (in | module | <pre>get_stage1_frame()</pre> | | sk_dsp_comm.fir_design_helper) | , 125 | (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream | | firwin_lpf() (in | module | method), 138 | | sk_dsp_comm.fir_design_helper) | | <pre>get_stage2_frame()</pre> | | <pre>freq_resp() (sk_dsp_comm.multirate_i</pre> | helper.multirate_ | | | method), 131 | | method), 138 | | | helper.multırate_ | MRSK_bb() (in module sk_dsp_comm.digitalcom), 96 | | method), 132 | J J. | gray2bin() (in module sk_dsp_comm.digitalcom), 106 | | freqz_cas() (in | module | 100 | | <pre>sk_dsp_comm.iir_design_helper) freqz_resp()</pre> | , 120
module | H | | $sk_dsp_comm.multirate_helper$), | | hard_Pk() (in module sk_dsp_comm.fec_conv), 122 | | 5asp_co,;; | | — · · · · — — · · · · · · · · · · · · · | | multirate_ITR (class in sk_dsp_comm.iir_design_helper), 127 module sk_dsp_comm.iir_design_helper, 128 method), 134 139 method), 134 method), 139 method), 134 139 method), 134 135 method), 139 method), 139 method), 134 method), 139 method), 139 method), 139 method), 139 me | I | multirate_FIR (class in |
--|---|---| | sk_dsp_comm.nir_design_helper), 127 ITR_hpf() | <pre>IIR_bpf() (in module</pre> | | | TIR_pf() (in module sk_dsp_comm.iir_design_helper), 127 module sk_dsp_comm.signys), 179 module sk_dsp_comm.signys), 145 module sk_dsp_comm.riskar_helper.RTLSDR_stream method), 134 module sk_dsp_comm.signys), 173 module sk_dsp_comm.signys), 174 175 module sk_dsp_comm.signys), 176 module sk_dsp_comm.signys), 176 module sk_dsp_comm.signys), 176 module sk_dsp_comm.signys), 178 179 170 sk_dsp_comm. | | _ ` | | module sk_dsp_comm.tir_design_helper), 127 module sk_dsp_comm.coeff2header), 94 Ln_out_check () (ak_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 Lnteractive_FM_Rx () (sk_dsp_comm.sigsys), 173 Lnteractive_FM_Rx () (sk_dsp_comm.sigsys), 173 Lnteractive_stream () (sk_dsp_comm.sigsys), 173 Lnteractive_stream () (sk_dsp_comm.sigsys), 173 Lnteractive_stream () (sk_dsp_comm.sigsys), 173 Lnteractive_stream () (sk_dsp_comm.sigsys), 173 Lnterp24 () (in module sk_dsp_comm.sigsys), 174 Lnterp24 () (in module sk_dsp_comm.sigsys), 174 Lnop_audio (class in sk_dsp_comm.sigsys), 176 Lp_tri() (in module sk_dsp_comm.sigsys), 176 Lp_tri() (in module sk_dsp_comm.sigsys), 178 maddle sk_dsp_comm.fir_design_helper, 123 sk_dsp_comm.fir_design_helper, 123 sk_dsp_comm.fir_design_helper, 123 sk_dsp_comm.itr_design_helper, 124 sk_dsp_comm.itr_design_helper, 125 sk_dsp_comm.itr_design_helper, 126 127 sk_dsp_comm.itr_design_help | | | | ### Sk dsp_comm.iir_design_helper), 127 ### ITR_pf () (in module sk dsp_comm.digitalcom), 107 ### psd () (in module sk dsp_comm.digitalcom), 108 ### psd () (in module sk dsp_comm.digitalcom), 109 100 ### psd () (in module sk dsp_comm.digitalcom), 100 #### (| | | | module sk_dsp_comm.sigsys), 179 sk_dsp_comm.coeff2header), 94 in_out_check () (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 interactive_FM_RX () (sk_dsp_comm.tidsr_helper.RTISDR_stream method), 134 interactive_stream () (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 interactive_stream () (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 interactive_stream () (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 interactive_stream () (sk_dsp_comm.sigsys), 173 L L L L L L L L L L L L L | — · · · · · · · · · · · · · · · · · · · | | | N NDA_symb_sync() module sk_dsp_comm.coeff2header), 94 In_out_check() (sk_dsp_comm.pyaudio_helper.DSP_io_stream sk_dsp_comm.sigsys), 145 Interactive_FM_Rx() (sk_dsp_comm.risdr_helper.RTLSDR_stream method), 134 Interactive_stream() (sk_dsp_comm.risdr_helper.DSP_io_stream method), 134 Interp24() (in module sk_dsp_comm.sigsys), 173 Interp24() (in module sk_dsp_comm.sigsys), 173 Interp24() (in module sk_dsp_comm.sigsys), 174 s | | | | NDA_symb_sync() (in module sk_dsp_comm.coeff2header), 94 MDA_symb_sync() (in module sk_dsp_comm.syndio_helper.DSP_io_stream sk_dsp_comm.synchronization), 199 MDA_symb_sync() (in module sk_dsp_comm.syndio_helper.DSP_io_stream sk_dsp_comm.synchronization), 199 MRZ_bits() (in module sk_dsp_comm.sigsys), 145 MRZ_bits() (in module sk_dsp_comm.sigsys), 146 OFDM_rx() (in module sk_dsp_comm.sigsys), 146 OFDM_rx() (in module sk_dsp_comm.digitalcom), 99 OR_filter() (in module sk_dsp_comm.sigsys), 147 Unine_spectra() (in module sk_dsp_comm.sigsys), 174 Loop_audio (class in sk_dsp_comm.sigsys), 174 Loop_audio (class in sk_dsp_comm.pyaudio_helper), 135 Lowpass_order() (in module sk_dsp_comm.sigsys), 176 Lop_samp() (in module sk_dsp_comm.sigsys), 177 MM M_seq() (in module sk_dsp_comm.sigsys), 178 Module Sk_dsp_comm.coeff2header, 93 Sk_dsp_comm.digitalcom, 94 Sk_dsp_comm.mitrirate_helper, 123 Sk_dsp_comm.mitrirate_helper, 123 Sk_dsp_comm.mitrirate_helper, 130 Sk_dsp_comm.sigsys, 143 Sk_dsp_comm.sigsys, 143 Sk_dsp_comm.sigsys, 143 Sk_dsp_comm.sigsys, 143 Sk_dsp_comm.sigsys, 143 Sk_dsp_comm.sigsys, 143 Sk_dsp_comm.sigsys, 144 Sk_dsp_comm.sigsys, 145 Sk_dsp_comm.sigsys, 148 Sk_dsp_comm.sigsys, 149 PLI_(o) (in module sk_dsp_comm.rilsdr_helper, RTLSDR_stream method), 139 Plot_stage() (isk_dsp_comm.sigsys), 148 polititer() (in module sk_dsp_comm.sigsys), 149 Plot_stage() (isk_dsp_comm.rilsdr_helper, RTLSDR_stream method), 139 Plot_stage() (isk_dsp_comm.sigsys), 148 polititer() (in module sk_dsp_comm.sigsys), 149 Plot_stage() (isk_dsp_comm.rilsdr_helper, RTLSDR_stream method), 139 Plot_stage() (isk_dsp_comm.sigsys), 148 polititer() (in module sk_dsp_comm.sigsys), 149 Plot_stage() (isk_dsp_comm.rilsdr_helper, RTLSDR_stream method), 139 Plot_stage() (isk_dsp_comm.sigsys), 148 polititer() (in module sk_dsp_comm.sigsys), 149 Plot_stage() (isk_dsp_comm.r | — · · | N.I. | | In_out_check() (sk_dsp_comm.pyaudio_helper.DSP_io_stream sk_dsp_comm.synchronization), 199 method), 134 Interactive_FM_Rx() (sk_dsp_comm.rilsdr_helper.RTLSDR_stream method), 139 Interactive_stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 Interp24() (in module sk_dsp_comm.sigsys), 173 L L Line_spectra() (in module sk_dsp_comm.sigsys), 174 176 Line_spectra() (in module sk_dsp_comm.sigsys), 176 Line_spectra() (in module sk_dsp_comm.sigsys), 176 Line_spectra() (in module sk_dsp_comm.sigsys), 177 MM Line_spectra() (in module sk_dsp_comm.sigsys), 178 Line_spectra() (in module sk_dsp_comm.sigsys), 178 Line_spectra() (in module sk_dsp_comm.sigsys), 179 sk_dsp_comm.sigs | | N | | method), 134 interactive_FM_Rx() (sk_dsp_comm.rlsdr_helper.RTLSDR_stream method), 139 interactive_stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 interp24() (in module sk_dsp_comm.sigsys), 173 L L L Line_spectra() (in module sk_dsp_comm.sigsys), 173 L Line_spectra() (in module sk_dsp_comm.sigsys), 174 ims_ic() (in module sk_dsp_comm.sigsys), 174 ltoop_audio (class in sk_dsp_comm.pyaudio_helper), 135 lowpass_order() (in module sk_dsp_comm.sigsys), 176 interp1() (in module sk_dsp_comm.sigsys), 176 interp2() (in module sk_dsp_comm.sigsys), 176 interp2() (in module sk_dsp_comm.sigsys), 176 interp2() (in module sk_dsp_comm.sigsys), 174 ltoop_audio (class in sk_dsp_comm.pyaudio_helper), 125 interp2() (in module sk_dsp_comm.sigsys), 176 interp2() (in module sk_dsp_comm.sigsys), 176 interp2() (in module sk_dsp_comm.sigsys), 174 P P pack_IR() (isk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 PCM_decode() (in module sk_dsp_comm.digitalcom), 100 PCM_encode() (in module sk_dsp_comm.digitalcom), 101 peaking() (in module sk_dsp_comm.sigsys), 178 interp24() (in module sk_dsp_comm.sigsys), 174 P P pack_IR() (isk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 PCM_decode() (in module sk_dsp_comm.digitalcom), 100 PCM_encode() (in module sk_dsp_comm.digitalcom), 100 PCM_encode() (in module sk_dsp_comm.sigsys), 179 peaking() sk_ds | sk_dsp_comm.coeff2header), 94 | | | Interactive_FM_RX() (sk_dsp_comm.rlsdr_helper.RTLSDR_stream method), 139 Linteractive_stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 Linterp24() (in module sk_dsp_comm.sigsys), 173 Linterspectra() (in module sk_dsp_comm.sigsys), 174 Line_spectra() 176 Line_spectra() (in module sk_dsp_comm.sigsys), 176 Line_spectra() (in module sk_dsp_comm.sigsys), 176 Line_spectra() (in module sk_dsp_comm.sigsys), 176 Line_spectra() (in mod | | | | (sk_dsp_comm.rilsdr_helper.RTISDR_stream method), 139 interactive_stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 interp24 () (in module sk_dsp_comm.sigsys), 173 interp24 () (in module sk_dsp_comm.sigsys), 174 | | | | method), 139 interactive_stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 interp24() (in module sk_dsp_comm.sigsys), 173 Line_spectra() (in module sk_dsp_comm.sigsys), 174 Lins_ic() (in module sk_dsp_comm.sigsys), 174 Lins_ic() (in module sk_dsp_comm.sigsys), 174 Lins_ic() (in module sk_dsp_comm.sigsys), 174 Loop_audio (class in sk_dsp_comm.pyaudio_helper), 135 Lowpass_order() (in module sk_dsp_comm.sigsys), 176 Lip_tri() (in module sk_dsp_comm.sigsys), 176
Lip_tri() (in module sk_dsp_comm.sigsys), 177 M In_seq() (in module sk_dsp_comm.sigsys), 178 nodule sk_dsp_comm.coeff2header, 93 sk_dsp_comm.coeff2header, 93 sk_dsp_comm.fic_design_helper, 123 sk_dsp_comm.fic_design_helper, 123 sk_dsp_comm.fic_design_helper, 123 sk_dsp_comm.rilsdr_helper, 132 s | | NRZ_bits2() (in module sk_asp_comm.sigsys), 145 | | (sk_dsp_comm.pyaudio_helperDSP_io_stream method), 134 Interp24 () (in module sk_dsp_comm.sigsys), 173 Line_spectra () (in module sk_dsp_comm.sigsys), 174 Ims_ic sk_dsp_comm.pyaudio_helper), 125 Ims_samp () (in module sk_dsp_comm.sigsys), 175 Ims_samp () (in module sk_dsp_comm.sigsys), 177 M Ims_ic () (in module sk_dsp_comm.sigsys), 178 Ims_ic () (in module sk_dsp_comm.sigsys), 174 sk_dsp_comm.sig | method), 139 | _ | | of DFM_tx() (in module sk_dsp_comm.sigsys), 173 Interp24() (in module sk_dsp_comm.sigsys), 173 Interp24() (in module sk_dsp_comm.sigsys), 174 Ins_ic() (in module sk_dsp_comm.sigsys), 174 Ins_ic() (in module sk_dsp_comm.sigsys), 174 Interp24() 179 sk_dsp_comm | | | | Description of the process pr | | | | Pack_LR() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 134 PCM_decode() (in module sk_dsp_comm.digitalcom), 100 PCM_encode() sk_dsp_comm. | | | | line_spectra() (in module sk_dsp_comm.sigsys), 174 lms_ic() (in module sk_dsp_comm.sigsys), 174 ltoop_audio (class in sk_dsp_comm.pyaudio_helper), 135 lowpass_order() (in module sk_dsp_comm.sigsys), 176 lp_samp() (in module sk_dsp_comm.sigsys), 176 lp_tri() (in module sk_dsp_comm.sigsys), 177 M m_seq() (in module sk_dsp_comm.sigsys), 178 module sk_dsp_comm.coeff2header, 93 sk_dsp_comm.fir_design_helper, 126 sk_dsp_comm.fir_design_helper, 123 sk_dsp_comm.mitrate_helper, 126 sk_dsp_comm.myaudio_helper, 126 sk_dsp_comm.pyaudio_helper, 126 sk_dsp_comm.sigsys), 178 plot_stage1() (in module sk_dsp_comm.sigsys), 179 phase_step() (in module sk_dsp_comm.sigsys), 179 phase_step() (in module sk_dsp_comm.sigsys), 179 phase_step() (in module sk_dsp_comm.synchronization), 200 pilot_PLL() (in module sk_dsp_comm.synchronization), 199 PLL_cbb() modul | | | | Itms_ic() (in module sk_dsp_comm.sigsys), 174 Ltop_audio (class in sk_dsp_comm.pyaudio_helper), 135 Lowpass_order() (in module sk_dsp_comm.sigsys), 176 Ltp_samp() (in module sk_dsp_comm.sigsys), 176 Ltp_samp() (in module sk_dsp_comm.sigsys), 177 M In_seq() (in module sk_dsp_comm.sigsys), 178 179 | | | | Loop_audio (class in sk_dsp_comm.pyaudio_helper), 135 Lowpass_order() | 174 | | | PCM_encode() (in module sk_dsp_comm.digitalcom), 101 101 102 102 103 103 104 104 104 104 105 104 105 104 105 1 | | <pre>PCM_decode() (in module sk_dsp_comm.digitalcom),</pre> | | In the second of | | | | Lp_samp() (in module sk_dsp_comm.sigsys), 176 Lp_tri() (in module sk_dsp_comm.sigsys), 177 M Lp_tri() (in module sk_dsp_comm.sigsys), 178 Lp_tri() (in module sk_dsp_comm.sigsys), 179 Lp_tri() (in module sk_dsp_comm.synchronization), 200 Lp_tri() (in module sk_dsp_comm.synchronization), 199 sk_dsp_comm.rilsdr_helper, 1715 (sk_dsp_comm.rilsdr_helper, | | | | Lp_samp() (in module sk_dsp_comm.sigsys), 176 Lp_tri() (in module sk_dsp_comm.sigsys), 177 M M_seq() (in module sk_dsp_comm.sigsys), 178 module sk_dsp_comm.coeff2header, 93 sk_dsp_comm.digitalcom, 94 sk_dsp_comm.fir_design_helper, 123 sk_dsp_comm.rilr_design_helper, 130 sk_dsp_comm.pyaudio_helper, 132 sk_dsp_comm.sigsys, 143 sk_dsp_comm.digitalcom), 96 MPSK_BEP_thy() (in module sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 MDSK_gray_decode() (in module sk_dsp_comm.sigsys), 180 phase_step() (in module sk_dsp_comm.synchronization), 200 pllot_PLL() (in module sk_dsp_comm.synchronization), 199 PLL_cbb() (in module sk_dsp_comm.synchronization), 199 PLL_cbb() (in module sk_dsp_comm.synchronization), 190 plot_processed_stage1() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 139 plot_stage1() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 139 PN_gen() (in module sk_dsp_comm.sigsys), 148 position_CD() (in module sk_dsp_comm.sigsys), 180 prin_alias() (in module sk_dsp_comm.sigsys), 182 puncture() (sk_dsp_comm.sigsys), 182 position_CD() (in module sk_dsp_comm.sigsys), 182 puncture() (sk_dsp_comm.sigsys), 182 position_CD() (in module sk_dsp_comm.sigsys), 183 posit | - · · · · · · · · · · · · · · · · · · · | | | Injectic () (in module sk_dsp_comm.sigsys), 177 M Injectic () (in module sk_dsp_comm.sigsys), 178 Injectic () (in module sk_dsp_comm.rilsdr_helper), 142 Injectic () (in module sk_dsp_comm.rilsdr_helper), 142 Injectic () (in module sk_dsp_comm.sigsys), 178 Injectic () (in module sk_dsp_comm.rilsdr_helper), 142 Injectic () (in module sk_dsp_comm.sigsys), 178 Injectic () (in module sk_dsp_comm.sigsys), 189 (| | | | pilot_PLL() (in module sk_dsp_comm.rtlsdr_helper), 142 PLL1() (in module sk_dsp_comm.synchronization), 199 PLL_cbb() (in module sk_dsp_comm.synchronization), 200 plot_processed_stagel() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 139 sk_dsp_comm.synchronization, 198 sk_dsp_comm.synchronization, 198 mono_FM() (in module sk_dsp_comm.rtlsdr_helper), 142 APSK_bb() (in module sk_dsp_comm.digitalcom), 96 APSK_gray_decode() (in module sk_dsp_comm.digitalcom), 96 APSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 | <pre>lp_tri() (in module sk_dsp_comm.sigsys), 177</pre> | <u> </u> | | In_seq() (in module sk_dsp_comm.sigsys), 178 In_seq() (in module sk_dsp_comm.synchronization), 199 sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 139 sk_dsp_comm.rtlsdr_he | N / | | | module sk_dsp_comm.coeff2header, 93 sk_dsp_comm.digitalcom, 94 sk_dsp_comm.fec_conv, 112 sk_dsp_comm.fir_design_helper, 123 sk_dsp_comm.iir_design_helper, 126 sk_dsp_comm.multirate_helper, 130 sk_dsp_comm.rtlsdr_helper, 132 sk_dsp_comm.rtlsdr_helper, 132 sk_dsp_comm.rtlsdr_helper, 136 sk_dsp_comm.sigsys, 143 sk_dsp_comm.sigsys, 143 sk_dsp_comm.synchronization, 198 mono_FM() (in module sk_dsp_comm.rtlsdr_helper), 142 MPSK_bb() (in module sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 | | | | sk_dsp_comm.coeff2header, 93 sk_dsp_comm.digitalcom, 94 sk_dsp_comm.fec_conv, 112 sk_dsp_comm.fir_design_helper, 123 sk_dsp_comm.wiltirate_helper, 126 sk_dsp_comm.multirate_helper, 130 sk_dsp_comm.pyaudio_helper, 132 sk_dsp_comm.rtlsdr_helper, 136 sk_dsp_comm.sigsys, 143 sk_dsp_comm.sigsys, 143 sk_dsp_comm.synchronization, 198 mono_FM() (in module sk_dsp_comm.rtlsdr_helper), 142 MPSK_bb() (in module sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 MPSK_start procede help() (in module sk_dsp_comm.digitalcom), 97 MPSK_start procede help() (in module sk_dsp_comm.digitalcom), 97 MPSK_start procede help() (in module sk_dsp_comm.digitalcom), 97 | | | | sk_dsp_comm.digitalcom, 94 sk_dsp_comm.fec_conv, 112 sk_dsp_comm.fir_design_helper, 123 sk_dsp_comm.multirate_helper, 126 sk_dsp_comm.multirate_helper, 130 sk_dsp_comm.pyaudio_helper, 132 sk_dsp_comm.rtlsdr_helper, 136 sk_dsp_comm.sigsys, 143 sk_dsp_comm.sigsys, 143 sk_dsp_comm.synchronization, 198 mono_FM() (in module sk_dsp_comm.rtlsdr_helper), 142 MPSK_bb() (in module sk_dsp_comm.digitalcom), 96 MPSK_BEP_thy() (in module sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 | | | | sk_dsp_comm.fec_conv, 112 sk_dsp_comm.fir_design_helper, 123 sk_dsp_comm.iir_design_helper, 126 sk_dsp_comm.multirate_helper, 130 sk_dsp_comm.pyaudio_helper, 132 sk_dsp_comm.rtlsdr_helper, 132 sk_dsp_comm.rtlsdr_helper, 136 sk_dsp_comm.sigsys, 143 sk_dsp_comm.digitalcon), 96 MPSK_bb() (in module sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 | | | | sk_dsp_comm.fir_design_helper, 123 sk_dsp_comm.iir_design_helper, 126 sk_dsp_comm.multirate_helper, 130 sk_dsp_comm.pyaudio_helper, 132 sk_dsp_comm.rtlsdr_helper, 132 sk_dsp_comm.rtlsdr_helper, 136 sk_dsp_comm.sigsys, 143 sk_dsp_comm.sigsys, 143 sk_dsp_comm.synchronization, 198 mono_FM() (in module sk_dsp_comm.rtlsdr_helper), 142 PPSK_bb() (in module sk_dsp_comm.digitalcom), 96 PPSK_BEP_thy() (in module sk_dsp_comm.digitalcom), 96 PPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 PPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 PRSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 PRSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 PRSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 | | | | sk_dsp_comm.iir_design_helper, 126
sk_dsp_comm.multirate_helper, 130 sk_dsp_comm.pyaudio_helper, 132 sk_dsp_comm.rtlsdr_helper, 136 sk_dsp_comm.rtlsdr_helper, 136 sk_dsp_comm.sigsys, 143 sk_dsp_comm.synchronization, 198 mono_FM() (in module sk_dsp_comm.rtlsdr_helper), 142 MPSK_bb() (in module sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 | | | | sk_dsp_comm.multirate_helper, 130 sk_dsp_comm.pyaudio_helper, 132 sk_dsp_comm.rtlsdr_helper, 136 sk_dsp_comm.sigsys, 143 sk_dsp_comm.sigsys, 143 sk_dsp_comm.synchronization, 198 mono_FM() (in module sk_dsp_comm.rtlsdr_helper), 142 MPSK_bb() (in module sk_dsp_comm.digitalcom), 96 MPSK_BEP_thy() (in module sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 | sk_dsp_comm.iir_design_helper,126 | | | sk_dsp_comm.rtlsdr_helper, 136 sk_dsp_comm.sigsys, 143 sk_dsp_comm.synchronization, 198 mono_FM() (in module sk_dsp_comm.rtlsdr_helper), | | | | sk_dsp_comm.sigsys, 143 sk_dsp_comm.synchronization, 198 mono_FM() (in module sk_dsp_comm.rtlsdr_helper), 142 MPSK_bb() (in module sk_dsp_comm.digitalcom), 96 MPSK_BEP_thy() (in module sk_dsp_comm.digitalcom), 96 sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.fec_conv.fec_con | | <pre>plot_stage1() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream</pre> | | sk_dsp_comm.synchronization, 198 mono_FM() (in module sk_dsp_comm.rtlsdr_helper), | | · · · · · · · · · · · · · · · · · · · | | nono_FM() (in module sk_dsp_comm.rtlsdr_helper), 142 APSK_bb() (in module sk_dsp_comm.digitalcom), 96 APSK_BEP_thy() (in module sk_dsp_comm.digitalcom), 96 sk_dsp_comm.digitalcom), 96 APSK_gray_decode() (in module sk_dsp_comm.fec_conv.fec_con | | | | 142 PSK_bb() (in module sk_dsp_comm.digitalcom), 96 PSK_BEP_thy() (in module sk_dsp_comm.sigsys), 180 PSK_BEP_thy() (in module sk_dsp_comm.sigsys), 182 prin_alias() (in module sk_dsp_comm.sigsys), 182 prin_alias() (in module sk_dsp_comm.sigsys), 182 prin_alias() (in module sk_dsp_comm.sigsys), 180 182 puncture() (sk_dsp_comm.fec_conv.fec_conv method), 115 PSK_gray_decode() (in module sk_dsp_comm.sigsys), 180 | | | | #PSK_bb() (in module sk_dsp_comm.digitalcom), 96 #PSK_BEP_thy() (in module sk_dsp_comm.sigsys), 182 #PSK_gray_decode() (in module sk_dsp_comm.fec_conv.fec_conv #PSK_gray_decode() (in module sk_dsp_comm.fec_conv.fec_conv #PSK_gray_decode() (in module sk_dsp_comm.fec_conv.fec_conv #PSK_gray_decode() (in module sk_dsp_comm.fec_conv.fec_conv #PSK_gray_decode() (in module sk_dsp_comm.sigsys), 182 #PSK_gray_decode() (in module sk_dsp_comm.fec_conv.fec_conv #PSK_gray_decode() (in module sk_dsp_comm.fec_conv.fec_conv #PSK_gray_decode() (in module sk_dsp_comm.sigsys), 182 #PSK_gray_decode() (in module sk_dsp_comm.fec_conv.fec_conv | | | | MPSK_BEP_thy() (in module puncture() (sk_dsp_comm.fec_conv.fec_conv sk_dsp_comm.digitalcom), 96 method), 115 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 Q MPSK_gray_opcode bb() (in module puncture() (sk_dsp_comm.fec_conv.fec_co | MPSK_bb() (in module sk_dsp_comm.digitalcom), 96 | | | sk_dsp_comm.digitalcom), 96 MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 97 Q MPSK_gray_appeada_bb() (in module module) | MPSK_BEP_thy() (in module | | | sk_dsp_comm.digitalcom), 97 Q | | | | ADCK gray angodo bb () (in modulo | | 0 | | resk_gray_encode_bb() (in module of fight (in module sk dsp. comm digitalcom) 102 | | · | | sk_dsp_comm.digitalcom), 97 | | Q_fctn() (in module sk_dsp_comm.digitalcom), 102 | ``` QAM_bb () (in module sk_dsp_comm.digitalcom), 101 set_audio_gain()(sk_dsp_comm.rtlsdr_helper.RTLSDR_stream QAM_BEP_thy() module method), 141 (in set audio gain db() sk dsp comm.digitalcom), 101 (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream QAM_gray_decode() module sk_dsp_comm.digitalcom), 102 method), 141 QAM gray encode bb() module set_audio_in() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream (in sk dsp comm.digitalcom), 102 method), 141 set_audio_out()(sk_dsp_comm.rtlsdr_helper.RTLSDR_stream QAM_SEP () (in module sk_dsp_comm.digitalcom), 101 QPSK bb () (in module sk dsp comm.digitalcom), 102 method), 141 QPSK_BEP() (in module sk_dsp_comm.digitalcom), set_fc() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 141 QPSK_rx() (in module sk_dsp_comm.digitalcom), 102 set_fc_mhz() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream QPSK_tx() (in module sk_dsp_comm.digitalcom), 102 method), 141 set_fs() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream R method), 141 set_gain()(sk_dsp_comm.rtlsdr_helper.RTLSDR_stream rate_change (class method), 141 sk dsp comm.multirate helper), 132 set_NFFT() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream rc_imp() (in module sk_dsp_comm.digitalcom), 108 method), 141 rc_imp() (in module sk_dsp_comm.sigsys), 182 set refresh rate() rect() (in module sk_dsp_comm.sigsys), 183 (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream rect_conv() (in module sk_dsp_comm.sigsys), 184 method), 141 reset data out queue() set_rtl_buffer_size()
(sk_dsp_comm.rtlsdr_helper.RTLSDR_stream (sk dsp comm.rtlsdr helper.RTLSDR stream method), 139 method), 141 RTLSDR_stream (class in set_stage1_coeffs() sk_dsp_comm.rtlsdr_helper), 136 (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream run_plot_processed_stage1_stream() method), 141 (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream set_stage2_coeffs() method), 139 (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream run_plot_rf_stream() method), 141 (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream show_logs() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 140 method), 141 run_plot_stage1_stream() simple_SA() (in module sk_dsp_comm.sigsys), 188 (sk dsp comm.rtlsdr helper.RTLSDR stream simpleOuant() (in module sk dsp comm.sigsys), 186 method), 140 sinusoidAWGN() (in module sk_dsp_comm.sigsys), run_plot_stage2_stream() 189 (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream sk_dsp_comm.coeff2header method), 140 module, 93 run_user_stream() sk_dsp_comm.digitalcom (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream module, 94 method), 140 sk_dsp_comm.fec_conv RZ_bits() (in module sk_dsp_comm.digitalcom), 102 module, 112 S sk_dsp_comm.fir_design_helper module, 123 scatter() (in module sk dsp comm.digitalcom), 109 sk_dsp_comm.iir_design_helper scatter() (in module sk_dsp_comm.sigsys), 185 module, 126 sccs_bit_sync() (in module sk_dsp_comm.multirate_helper sk_dsp_comm.rtlsdr_helper), 142 module, 130 set_audio_buffsize() sk_dsp_comm.pyaudio_helper (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream module, 132 method), 141 \verb|set_audio_fs()| (sk_dsp_comm.rtlsdr_helper.RTLSDR_sk_dsp_comm. module, 136 method), 141 sk_dsp_comm.sigsys ``` ``` module, 143 to_wav() (in module sk_dsp_comm.sigsys), 194 sk_dsp_comm.synchronization toggle_invert() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream module, 198 method), 142 soft_Pk() (in module sk_dsp_comm.fec_conv), 122 traceback_plot() (sk_dsp_comm.fec_conv.fec_conv soi_snoi_gen() (in module sk_dsp_comm.sigsys), method), 116 trellis branches (class in module sk dsp comm.fec conv), 122 sos cascade() (in trellis_nodes (class in sk_dsp_comm.fec_conv), sk_dsp_comm.iir_design_helper), 129 sos_zplane() (in module 122 sk_dsp_comm.iir_design_helper), 129 trellis_paths (class in sk_dsp_comm.fec_conv), splane() (in module sk_dsp_comm.sigsys), 191 sqrt_rc_imp() (in module trellis_plot() (sk_dsp_comm.fec_conv.fec_conv sk_dsp_comm.digitalcom), 110 method), 116 sqrt_rc_imp() (in module sk_dsp_comm.sigsys), 191 tri() (in module sk_dsp_comm.sigsys), 195 step() (in module sk_dsp_comm.sigsys), 192 stereo_FM() (in module sk_dsp_comm.rtlsdr_helper), 142 module unique_cpx_roots() (in stop() (sk_dsp_comm.pyaudio_helper.DSP_io_stream sk_dsp_comm.iir_design_helper), 130 method), 135 unique_cpx_roots() (in module (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream stop() sk_dsp_comm.sigsys), 196 method), 141 up() (sk dsp comm.multirate helper.multirate FIR stop all() (sk dsp comm.rtlsdr helper.RTLSDR stream method), 131 method), 141 up() (sk_dsp_comm.multirate_helper.multirate_IIR stop_all_plots() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream_method), 132 method), 142 (sk_dsp_comm.multirate_helper.rate_change up() stop_processed_stage1_plot() method), 132 (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream upsample() (in module sk_dsp_comm.sigsys), 197 method), 142 stop_rf_plot() (sk_dsp_comm.rtlsdr_helper.RTLSDR_\fream method), 142 viterbi_decoder() stop_stage1_plot() (sk_dsp_comm.fec_conv.fec_conv method), (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 142 W stop_stage2_plot() (sk dsp comm.rtlsdr helper.RTLSDR stream wav2complex() (in module method), 142 sk dsp comm.rtlsdr helper), 142 stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 135 stream_stats() (sk_dsp_comm.pyaudio_helper.DSP_ io stream xcorr() (in module sk_dsp_comm.digitalcom), 112 method), 135 strips() (in module sk dsp comm.digitalcom), 111 Т zplane() (in module sk_dsp_comm.sigsys), 197 zplane() (sk_dsp_comm.multirate_helper.multirate_FIR module ten_band_eq_filt() (in method), 131 sk_dsp_comm.sigsys), 193 zplane() (sk_dsp_comm.multirate_helper.multirate_IIR module ten_band_eq_resp() (in method), 132 sk_dsp_comm.sigsys), 194 thread_stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 135 time_delay() (in module sk_dsp_comm.digitalcom), 111 time step() (in module sk_dsp_comm.synchronization), 200 to_bin() (in module sk_dsp_comm.digitalcom), 112 ```